
$36�IRU�]26

Issue 2, November 2001

XVHU
V�JXLGH

8VHU
V�*XLGH
ugpubb.book Page 1 Tuesday, February 19, 2002 9:39 AM

Copyright © 2002 Micro Focus International Limited.
All rights reserved.

Micro Focus International Limited has made every effort to ensure that this book is
correct and accurate, but reserves the right to make changes without notice at its sole
discretion at any time. The software described in this document is supplied under a
license and may be used or copied only in accordance with the terms of such license,
and in particular any warranty of fitness of Micro Focus software products for any
particular purpose is expressly excluded and in no event will Micro Focus be liable for
any consequential loss.

Animator®, COBOL Workbench®, EnterpriseLink®, Mainframe Express®,
Micro Focus®, Net Express®, REQL® and Revolve® are registered trademarks, and
AAI™, Analyzer™, Application to Application Interface™, AddPack™, AppTrack™,
AssetMiner™, CCI™, DataConnect™, Dialog System™, EuroSmart™, FixPack™,
LEVEL II COBOL™, License Management Facility™, License Server™,
Mainframe Access™, Mainframe Manager™, Micro Focus COBOL™, Object COBOL™,
OpenESQL™, Personal COBOL™, Professional COBOL™, Server Express™,
SmartFind™, SmartFind Plus™, SmartFix™, SourceConnect™, Toolbox™, WebSync™,
and Xilerator™ are trademarks of Micro Focus International Limited. All other
trademarks are the property of their respective owners.

No part of this publication, with the exception of the software product user
documentation contained on a CD-ROM, may be copied, photocopied, reproduced,
transmitted, transcribed, or reduced to any electronic medium or machine-readable
form without prior written consent of Micro Focus International Limited.

Licensees may duplicate the software product user documentation contained on a CD-
ROM, but only to the extent necessary to support the users authorized access to the
software under the license agreement. Any reproduction of the documentation,
regardless of whether the documentation is reproduced in whole or in part, must be
accompanied by this copyright statement in its entirety, without modification.

U.S. GOVERNMENT RESTRICTED RIGHTS. It is acknowledged that the Software and the
Documentation were developed at private expense, that no part is in the public
domain, and that the Software and Documentation are Commercial Computer
Software provided with RESTRICTED RIGHTS under Federal Acquisition Regulations
and agency supplements to them. Use, duplication or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of The
Rights in Technical Data and Computer Software clause at DFAR 252.227-7013 et. seq.
or subparagraphs (c)(1) and (2) of the Commercial Computer Software Restricted
Rights at FAR 52.227-19, as applicable. Contractor is Micro Focus, 9420 Key West
Avenue, Rockville, Maryland 20850. Rights are reserved under copyright laws of the
United States with respect to unpublished portions of the Software.

20020219093933

ugpubb.book Page 2 Tuesday, February 19, 2002 9:39 AM

3

ugpubb.book Page 3 Tuesday, February 19, 2002 9:39 AM
Table of Contents

1 Introduction . 9
Introduction to APS . 9

A Scenario for Using APS . 11

The APS Tool Set . 13

2 Paint the Application Definition. 15
Application Painter Concepts . 15

Painting an Application Definition . 17
Special Considerations . 22

Defining Application Components . 22

3 Import Database Definitions 25
Importer Concepts . 25

Importing IMS PSBs and DBDs . 26
Supplementing or Overriding DDI Statements 29

Importing SQL DB2 Objects . 31
Generating a DB2/DBP Object Import Report 34

Special Considerations. 35

Importing VSAM Files. 35

Importing IDMS Database Definitions . 37

4 Paint Character Screens. 39
Screen Painter Concepts. 39

Field Attributes . 41
Field Edits . 42
Global Data Elements . 43
Scenario Prototype. 44
Target-Specific Parameters . 45
User’s Guide

4

ugpubb.book Page 4 Tuesday, February 19, 2002 9:39 AM
Painting a Screen . 47
Special Considerations . 58

Painting Field Edits . 60

Creating and Running a Screen Flow Prototype 65

Modifying Screen Layouts. 71
Delete a Field or Row . 71
Modify a Repeated Record Block . 71
Move or Copy a Field or Row . 72
Track Multiple Field Changes . 73

Setting Parameters for Generation . 74

Importing BMS Mapsets . 80

5 Define Processing Logic . 81
Concepts of Processing Logic . 81

Predefined Program Functions . 82
Specifying Predefined Program Functions. 87

Special Considerations . 94

Custom Program Functions . 94
Defining Custom Program Functions . 95

Mapping Screens to Database Fields . 101
Special Considerations . 102

Control Points . 103
Inserting Logic at Control Points . 106

6 Define Database Access . 113

Concepts of APS Database Access. 113

Defining SQL Database Calls . 118
Defining Basic SQL Calls . 119
Defining Join Calls. 130
Defining Union Calls . 132

Special Considerations . 136

Defining IMS Database Calls . 136
Special Considerations . 141

Defining VSAM Database Calls . 141
Special Considerations . 145
User’s Guide

5

ugpubb.book Page 5 Tuesday, February 19, 2002 9:39 AM
Defining IDMS Database Calls . 146
Special Considerations . 151
Connecting and Disconnecting Records 151

Customized Database Calls . 152
Nested Loops . 153
Functions with Multiple Database Actions. 156
Custom Logic at Database Call Control Points 157
Status Codes and Error Messages . 161
Multiple-Field Key Qualification . 162
Database Calls as Custom Program Functions 164

Savekey and Commarea Storage . 166
Defining Savekey Storage and a Commarea 168

Special Considerations. 169

7 Generate the Application . 171
Concepts of Generation . 171

Setting Options. 172
Setting Project and Group Options. 173
Setting Generator Options . 174
Setting Precompiler Options . 176
Setting SQL Bind and Translate Options. 181
Setting Job Control Cards . 184
Setting IDMS Options . 184
Resetting Profile Variables . 186

Generating Applications . 186
Special Considerations . 187

Executing Applications. 188
Access the execution facilities . 189

8 Create User Help . 191
User Help Facility Concepts . 191

Defining the Help Database . 192
Defining an IMS Help Database . 193
Defining a VSAM Help Database . 194
Defining SQL Help Databases . 195

Special Considerations. 195
User’s Guide

6

ugpubb.book Page 6 Tuesday, February 19, 2002 9:39 AM
Working with the Help Source File. 196
Creating the Help Source File. 198

Special Consideration . 203

Generating the User Help Application. 203
Generating User Help in CICS/ISPF Environments 204
Generating User Help in an IMS Environment 205

Special Considerations . 206

Loading the Help Database . 206
Loading Help Source for VSAM . 206
Loading Help Source for IMS . 208

Special Considerations . 208

Customizing the User Help Application . 209

Maintaining the Help Database . 210

9 Define Online Programs with
Program Painter. 213
Concepts of the Program Painter . 213

Creating Online Programs in the Program Painter 216
Special Considerations . 228

10 Create Batch Programs . 229
Concepts of APS Batch Programming . 229

Creating Batch Programs . 232
Special Consideration . 244

Sample Batch Program . 244

11 Create Reports with Report
Writer . 251
Concepts of APS Report Writing. 251

Painting Report Mock-Ups . 259
Special Considerations . 260

Creating Report Programs . 261
Special Considerations . 272
User’s Guide

7

ugpubb.book Page 7 Tuesday, February 19, 2002 9:39 AM
Generate Multiple SUM or SOURCE Statements 274
Suffixed Data Elements . 275
Array Items . 276

Mapping Considerations . 277

Sample Program . 279

12 Using the APS/ENDEVOR Interface 287
APS/ENDEVOR Overview . 287

Using APS/ENDEVOR . 290
Accessing APS/ENDEVOR Options . 290
Specifying a Project and Group. 291
Checking a Component In . 291
Checking a Revision Out . 293
Running the View Differences Report . 295
Running the View Print Reports . 295
User’s Guide

8

ugpubb.book Page 8 Tuesday, February 19, 2002 9:39 AM
User’s Guide

9

ugpubb.book Page 9 Tuesday, February 19, 2002 9:39 AM
1 Introduction

This chapter contains the following sections:

• Introduction to APS

• A Scenario for Using APS

• The APS Tool Set

Introduction to APS
Generate MIS

applications
automatically

APS for z/OS is a full-function application generator that automates the
development and redevelopment of the MIS applications that support
your business. With APS you can build simple or complex applications
for a variety of IBM SAA production environments. You can generate
online and batch applications without manual coding.

Improve
application

quality

APS improves both the quality of your applications and your efficiency
in developing them. Quality improves because you focus on the end
user’s functional requirements, and not the application’s physical
implementation. As a result, applications generated with APS are more
likely to meet user expectations without extensive modifications.

APS lets developers focus on user needs by working in a variety of
development cycles. For example, if your approach is:

• Rapid Application Development (RAD), you use APS to prototype
your application user interface and its technical environment. You
generate a working application directly from the prototype,
without wasting any steps.

• Waterfall, you develop requirements, specifications, and designs in
a front-end CASE tool such as Excelerator. In this analysis- and
design-driven development, you then transfer that information to
APS, where it becomes the basis of the design you use to generate
the working application.
User’s Guide

10 Chapter 1 Introduction

ugpubb.book Page 10 Tuesday, February 19, 2002 9:39 AM
• Hybrid, you can start either with prototypes or high-level
specifications, and move freely between the two approaches as you
refine your models. APS gives you the flexibility to adapt your
lifecycle approach to particular project requirements.

• Redevelopment, you can capture high-level information about your
existing applications, and then forward engineer applications using
APS. APS makes it easy to maintain or enhance applications by
reusing design information that defines application screens,
databases, and other features.

Improve
development
productivity

Productivity improves because you can generate a complete working
application without first becoming an expert in IMS, CICS, ISPF, SQL, or
any other environment that APS supports. Because APS lets you focus on
high-level requirements and specifications, novice developers can
quickly generate simple designs with minimal training, and soon build
incrementally to complex applications.

APS also encourages developers to share and reuse design modules. It
lets you store all application design information in one central location
on a network or mainframe, so that multiple users can access that
information concurrently. As a result, your application designs always
reflect the entire team’s current work, and it is easy to share data.

Build your
knowledge base

into APS

APS lets developers share design components that leverage the
knowledge and experience of your most senior people. Expert COBOL
developers can customize APS so that it supports your organization’s
requirements for such features as user interface, report writing, and
naming conventions. When these senior APS users define in-house
standards or solve complex problems, you can incorporate their work
into the dynamic APS rules base, where it is available to all users at your
site.

Because APS lets you work from high-level designs, you can easily
retarget APS applications for multiple environments. You simply specify
the new target, and regenerate the application, using the same
programs, screens, and other application components. APS lets you use
your existing database subschemas, tables, and files in the new
applications you generate.
User’s Guide

A Scenario for Using APS 11

ugpubb.book Page 11 Tuesday, February 19, 2002 9:39 AM
A Scenario for Using APS
Start

development with
tasks you prefer

APS lets you work in whatever sequence you choose. For example, you
can define the user interface before you think about the program logic.
Or you can first define the global data that all programs must use.
Whether you decide to work top down, bottom up, or middle out, APS
lets you proceed from the step you just completed to the one you want
to do next. And, if you are maintaining or redeveloping existing
applications, APS lets you focus on only those components that must
change.

Build applications
from high-level

specifications

It’s often best to begin by defining your application’s runtime or target
environment. When you select an environment, APS handles the
necessary implementation details when it generates the application.
APS for z/OS supports the following targets:

Generate
applications for
multiple targets

If your application must run in several target environments, you can
easily specify it to do so. For example, you can generate an application
so that it can access more than one kind of database. In each case, APS
generates code that runs in the environments you specify in your high-
level application design.

Whenever you are ready, you import into APS the subschemas or tables
for your existing databases. Your APS applications can then access these
existing databases--first for prototype testing within APS, and then for
running the final application.

Prototype the
application’s look

and feel

You can next prototype the look and feel of an application, so that end
users can review it early in the design process. Then paint the screens
that support the user interface you select.

Database DB/2
IMS DB
VSAM
IDMS

Data Communication CICS
IMS DC
ISPF
ISPF Dialog
MVS (batch)
User’s Guide

12 Chapter 1 Introduction

ugpubb.book Page 12 Tuesday, February 19, 2002 9:39 AM
Paint applications APS lets you paint menu and data entry screens that include data entry
and text fields. You can also include message fields that let the
application communicate errors.

At this stage of prototyping, you and your end users run the screens to
ensure that the application user interface meets end user expectations.
You can enter data into data entry fields to ensure that they capture all
of the required information. You can test various display sequences of
screens to ensure that the screens support an intuitive work flow.
Because it is so easy to create, run, and change these prototypes, you
can work closely with end users to refine this aspect of the application
before you move on to design the underlying details of the application.

Specify
application logic

APS also simplifies the task of defining an application’s processing logic.
You can generate online applications from high-level designs using the
default logic that APS produces, or you can tailor the logic to your
particular requirements. For example, you can tailor the way that APS
processes database calls, error routines, or other program functions.

You create batch applications using whatever combination of
specification language, user-defined macros, or COBOL/2 syntax that
you prefer. You can combine online and batch programs as you like
within a single application.

Automatically
generate a

working
application

When you generate an application, it is ready to install and set up to
run in your production environment. Generation produces consistent,
high-quality code without run-time modules.

Test run the
application

Once you generate an application, you can test run your work within
APS using the APS ISPF Prototype Execution facility. This facility
emulates the basic functions of the mainframe CICS or IMS DC
environments, letting you test the data communication and database
functions of your programs. Doing so allows you to find features that
do not meet expectations, and then modify and retest those features
without first setting up the complete target environment that the
application will ultimately run in.

Using this facility, you can test out your application’s program
navigation and flow--for example, sending screens, passing control
from one program to another, and terminating programs. If you have
imported your database definitions, you can test the prototype using
test data in your actual SQL or VSAM (but not IMS) database; otherwise
you can test the processing logic using data that you enter into screens
but do not store.
User’s Guide

The APS Tool Set 13

ugpubb.book Page 13 Tuesday, February 19, 2002 9:39 AM
The APS Tool Set
Basic APS painters

and facilities
The basic APS toolset lets you generate applications from high-level
specifications. The APS tools that support this work are as follows:

• Application Painter lets you specify the target environment. You
also use the Application Painter to name the components of the
working application, such as its programs; screens or report
mockups; and data structures, and to define the relationships
among them.

• Database Importers let you use existing databases as part of any APS
application.

• Screen Editor lets you paint screens containing global or local data
elements.

• Scenario Painter lets you prototype the flow and behavior of
screens.

• Online Express lets you define all program logic by using predefined
teleprocessing and database function codes, mapping record fields
to screens, defining and qualifying database calls, and adding your
own program functions to support specialized requirements.

• Specification Painter lets you extend Online Express applications
with customized processing logic that supports your coding
practices.

• Program Painter is an alternative to Online Express, and lets you
create batch and online applications using COBOL II and high-level
APS constructs such as database calls, data communication calls, and
Report Writer constructs.

• Generators let you create an executable COBOL application from
your high-level APS specification.

• Documentation Facility lets you produce reports about your
applications.

Advanced APS
painters and

facilities

If you need to customize your applications to reflect specific in-house
coding practices, APS also provides a set of advanced facilities that give
you this flexibility. These tools are as follows:

• Data Structure Painter lets you define data elements you can reuse
in applications.
User’s Guide

14 Chapter 1 Introduction

ugpubb.book Page 14 Tuesday, February 19, 2002 9:39 AM
• Data Element Facility lets APS Administrators set and enforce in-
house standards by creating and maintaining global data elements
that all developers use in their applications.

• User Help Facility lets you create online help systems for your
applications.

• Customization Facility lets you extend APS applications using macros
you define to support your coding practices.

• APS/ENDEVOR Interface lets you link to LEGENT’s ENDEVOR
software management product to manage the different versions of
your application components.
User’s Guide

15

ugpubb.book Page 15 Tuesday, February 19, 2002 9:39 AM
2 Paint the Application
Definition

This chapter contains the following sections:

• Application Painter Concepts

• Painting an Application Definition

• Defining Application Components

Application Painter Concepts
List application

components
The APS Application Painter lets you define your application by listing
all of its components in a matrix. The matrix provides both an overview
of the entire application, and easy access to the other APS painters and
facilities where you define or import the application components.

An application can include the following components:

• A combination of online and batch programs

• User interface screens

• Report mock-ups

• Data structures

• Subschemas and PSBs

• User-defined macros

• Subroutines, called global program stubs

These components can define an application of whatever scope you
require. For example, one application might be an entire Order
Inventory system, while another might be an Order Status database
inquiry.
User’s Guide

16 Chapter 2 Paint the Application Definition

ugpubb.book Page 16 Tuesday, February 19, 2002 9:39 AM
List components
as they relate to

each other

You list application components in the Application Painter screen so
that the matrix indicates their relationships. To do so, you type a
program name and the names of all the components that belong with
the program on one row. If you want multiple programs to share
components such as subschemas, data structures, or user-defined
macros, you type these component names on one or more rows above
your first program. Shared components are known as global
components; all programs in your application can reference them.

Figure 2-1. A Sample Application Definition

For example, you first type the name of any global subschema that
some or all of your programs access. On the next row, you type the
name of the first program and its associated screen. Then you type the
other program and screen names on subsequent rows. If you want one
of the programs to access a subschema other than the global
subschema, you type its name next to that program. If one of your
programs is a batch report program, you type the name of its report
mock-up, and indicate that the program is a batch program.

Define and
generate

components

Once you name these components, you can use the matrix to navigate
to the other APS facilities where you develop the components. As you
complete individual programs or the application as a whole, you can
return to the Application Painter to generate them into executable
COBOL source or to generate reports on the progress of your work.

Target your
database and

data
communications

environment

As part of the application definition, you specify your target
environment--the environment where you want your application to
run. APS generates your application to run in the database/data
communications (DB/DC) environment you specify. You can generate
User’s Guide

Painting an Application Definition 17

ugpubb.book Page 17 Tuesday, February 19, 2002 9:39 AM
your application for another environment simply by changing your
DB/DC target specification.

You can write an application that consists entirely of online programs,
entirely of batch programs, or you can mix online programs with batch
programs in the same application. In addition, an application--or a
single program--can access multiple DB/DC targets. For example, your
online programs can use CICS to access VSAM files and SQL databases,
while your batch programs access VSAM files and IMS databases.

Develop and test
your application

as a prototype

The Application Painter also supports the prototyping that speeds your
development work. This painter lets you access the Scenario Painter,
where you can test your application’s behavior without having to access
your database. For example, you can simulate executing your
application, to determine whether its screens display in the sequence
you want. You can reorder the sequence as desired, without leaving the
Scenario Painter. In addition, the Scenario Painter lets you enter sample
data on your screens to test how they accept and display data.

When you are ready to access your database, you can test your
application from within APS, using the APS Prototype Execution facility.
This facility emulates your production CICS or IMS environment.

Painting an Application Definition
To define an application, list components on the Application Painter
screen as follows:

Display
Application

Painter screen

1 From the APS Main Menu, enter 1 in the Command field. The
Painter Menu displays.

2 To access the Application Painter screen, enter e(dit) in the
Command field, ap(plication) in the Type field, and the application
name in the Member field. The application name can be eight
characters maximum; the first character must be alphabetic; others
can be alphanumeric or special characters.
User’s Guide

18 Chapter 2 Paint the Application Definition

ugpubb.book Page 18 Tuesday, February 19, 2002 9:39 AM
Specify DC target 3 Specify the data communications (DC) target in the DC field, as
described below:

Specify DB target 4 Specify the database (DB) target in the DB field. For a list of valid
DB/DC combinations, see the "DB/DC Target Combinations" topic in
the APS Reference. To specify a SQL target, leave the DB field blank
or let default to VSAM. Then go to the Generator Options screen
and specify the SQL target.

Note: If your application accesses multiple database targets, specify your
DB target as follows:

If application contains . . . Specify this DC target . . .

Only online programs Your online DC target, such as CICS.
For a list of valid DB/DC combinations
for generating executable programs
to run on various operating systems,
see the "DB/DC Target Combinations"
topic in the APS Reference.

Only batch programs Mvs. Additionally, leave each Screen
field and I/O field blank.

Both online and batch
programs

Your online DC target. To identify
programs as batch, enter *batch in
the Screens field next to each batch
program name and leave the I/O
fields blank.

If application accesses ... Specify this DB target ...

Two DB targets,
including VSAM

The non-VSAM target; APS always
gives you access to the VSAM target.

Two or more DB targets,
not including VSAM

Any of those DB targets. When you
generate the programs, first generate
the programs of the specified DB
target. Then change the DB target to
the next target and generate the
programs of that target. For example,
if your application accesses both SQL
and IMS subschemas, generate the
SQL programs separately from the
IMS programs.
User’s Guide

Painting an Application Definition 19

ugpubb.book Page 19 Tuesday, February 19, 2002 9:39 AM
Note: Specify your target operating system when you prepare to
generate the application.

Prototype using

ISPF
5 If you are creating a CICS or IMS DC application that accesses SQL or

VSAM databases and you want to create a prototype of the
application, you can execute and test within the APS Prototype
Execution facility. Set the DC target to ISPF and the DB target to SQL
or VSAM. After testing the ISPF prototype, change the DB/DC
targets to the production targets and regenerate the application.

Specify screen
size

6 Specify the size of the screen for your application. Enter one of the
following application screen sizes in the Screen Size field. Ensure
that the development screen lets you create application screens of
the size you want as follows:

Specify program 7 Enter your first online or batch program name in the Programs field.
The name can be eight characters maximum. The first character
must be alphabetic; others can be alphabetic, numeric, or the
special characters #, $, or @. The names all and dummy are invalid.

Specify screen 8 For online programs, enter the program associated screen name in
the Screens field, on the same row as the program name. Adhere to
the following naming conventions:

• CICS screen names can be seven characters maximum. The first
character must be alphabetic; others can be alphanumeric.

• IMS screen names can be eight characters maximum. The first
character must be alphabetic; others can be alphanumeric.

• ISPF Dialog screen names can be eight characters maximum.

• ISPF prototype screen names can be seven characters maximum.

Application
Screen Size Dimension

Development
Screen Size

MOD2 24 x 80 lines MOD2, MOD3, MOD4, or
MOD5

MOD3 32 x 80 lines MOD3 or MOD4

MOD4 43 x 80 lines MOD4

MOD5 27 x 132 lines MOD5
User’s Guide

20 Chapter 2 Paint the Application Definition

ugpubb.book Page 20 Tuesday, February 19, 2002 9:39 AM
For batch programs, enter *batch in the Screens field, on the same
row as the program name.

Specify screen I/O 9 On the same row as your first screen name, use the IO field to
specify whether the screen is input-only (i), output-only (o), or
input/output (io). For batch programs, leave the IO field blank.

Specify report
mock-up

10 To specify a batch program’s report mock-up, enter the mock-up
name in the Reports field. The name can be eight characters
maximum. The first character must be alphabetic or the special
characters #, $, or @; others can be any of these or numeric. You
create a mock-up using the APS Report Painter. For information, see
Create Reports with Report Writer.

Specify data
structure

11 Still on the same row, specify the name of any data structure file
that the program will reference. The name can be eight characters
maximum. The first character must be alphabetic; others can be
alphanumeric. To make the data structure global, or available to all
programs of the application, enter its name on a row above all
programs.

You create a data structure using the APS Data Structure Painter. For
information, see the "Data Structures" topic in the APS Reference.

12 If you specified a data structure file, specify in the Ty(pe) field the
program location where you plan to include it:

Specify
subschema or PSB

13 Enter your program subschema or PSB name in the Sbsc/PSB field.
The name can be eight characters maximum. The first character
must be alphabetic; others can be alphanumeric. To make the
subschema or PSB global, or available to all programs of the
application, enter its name on a row above all programs.

You import your existing subschema or PSB into APS using the APS
Importer Facility. See Import Database Definitions for information.

Specify user-
defined macro

library member

14 Still on the same row, specify any user-defined macro library
member that this program will reference. Enter the name in the
USERMACS field. The member that you specify must reside in your
Project and Group’s USERMACS data set. The name can be eight
characters maximum. The first character must be alphabetic; others

WS Working-Storage Section

LK Linkage Section

CA Program Commarea
User’s Guide

Painting an Application Definition 21

ugpubb.book Page 21 Tuesday, February 19, 2002 9:39 AM
can be alphanumeric. To make the member global, or available to
all programs of the application, enter its name on a row above all
programs.

You create macros using the APS Customization Facility language
structures. For information, see the APS Customization Facility
User’s Guide.

15 If you specified a macro library member, specify in the Loc(ation)
field the program location where you plan to invoke its macros.
Valid location values are as follows:

Specify global
stub

16 To include procedural subroutines that all programs of the
application can reference, known as global stubs, enter on a
separate row the stub name in the Programs field, and enter *stub
in the Screens field. The name can be eight characters maximum.
The first character must be alphabetic; others can be alphanumeric
or the special characters #, $, or @. Regardless of the row where you
enter a global stub name, any program of the application can
reference it.

17 On subsequent rows, specify the rest of your programs and their
associated components, following steps 7 through 16.

Location
Code Description

T Default; top of program, before Identification
Division

B Bottom of program

WT Top of Working-Storage Section

WS Working-Storage Section, after any data structures
you include in the Data Str field

WB Bottom of Working-Storage Section

LT Top of Linkage Section

LK Linkage Section, after any data structures you
include in the Data Str field

LB Bottom of Linkage Section

IO Top of Input-Output Section

FD Top of File Section

RP Top of Report Section

CA Top of Commarea
User’s Guide

22 Chapter 2 Paint the Application Definition

ugpubb.book Page 22 Tuesday, February 19, 2002 9:39 AM
18 To insert, move, copy, and delete rows of the application definition,
use the ISPF commands: insert; move; copy; delete; before; after.

19 Save the application definition by pressing PF3 or entering save in
the Command field. You can modify it at any time.

Special Considerations
• To create a new application definition quickly, you can copy an

existing one and modify it. To do so, use the Create Like function on
the Painter Menu.

• Deleting a component from the Application Painter matrix removes
it from the application definition, but not from the APS Dictionary.
This component is available to add it to other applications.
However, if you delete a component from the Painter Menu, you
remove it from the APS Dictionary, and must separately delete it
from any other applications that reference it.

Defining Application Components
To complete the application, you define each component using other
APS painters and facilities, following these steps, in any sequence you
want:

1 Position the cursor in the selection field to the left of the
component you want to define. Then enter one of the following
selection codes to access the painter you want:

• Online program, enter ox to access Online Express, a
nonprocedural, menu-driven facility for quickly defining online
COBOL-based programs. For details, see Define Processing Logic
and Define Database Access.

• Batch program, enter s to access the Program Painter, where you
can use APS database calls, data communications calls, and
Report Writer structures to speed batch program writing. For
details, see Create Batch Programs, and Create Reports with
Report Writer.
User’s Guide

Defining Application Components 23

ugpubb.book Page 23 Tuesday, February 19, 2002 9:39 AM
• Screen, enter s to access the the Screen Painter (if you are
creating a character-based application). For details, see Paint
Character Screens.

• Report mock-up, enter s to access the APS Report Mock-up
Painter, where you define the physical layout of reports. For
details, see Create Reports with Report Writer.

• Data structure, enter s to access the Data Structure Painter
where you define Working-Storage data elements. For details,
see the "Data Structures" topic in the APS Reference.

• Global program stub, enter s to access the Program Painter,
where you define Procedure Division paragraphs to customize
or supplement APS-generated program logic. For details, see
Define Processing Logic.

2 Alternatively, access the painter or facility you want from the
Painter Menu. To do so, specify one of the following types in the
Type field: ds (Data Structure Painter), pg (Program Painter), rp
(Report Mock-up Painter), or sc (Screen Painter). Then enter the
component name in the Member field, or press Enter to display a list
of components to select from.

3 To make your subschemas or PSBs available to your application, you
import them into APS using the APS database importers. The
importers generate your SQL and IDMS subschemas, IMS PSBs and
DBDs, and VSAM files into a format usable with your APS programs.
For details, see Import Database Definitions.

4 To create user-defined macros that provide program logic to meet
your own site-specific requirements, use any text editor to create
macros and store them in the USERMACS library in your APS Project
and Group. For details, see the APS Customization Facility User’s
Guide.
User’s Guide

24 Chapter 2 Paint the Application Definition

ugpubb.book Page 24 Tuesday, February 19, 2002 9:39 AM
User’s Guide

25

ugpubb.book Page 25 Tuesday, February 19, 2002 9:39 AM
3 Import Database Definitions

This chapter contains the following sections:

• Importer Concepts

• Importing IMS PSBs and DBDs

• Importing SQL DB2 Objects

• Importing VSAM Files

• Importing IDMS Database Definitions

Importer Concepts
Transfer database
definitions to APS

APS Import Facilities allow you to transfer information about your
database definitions and their copybook records to APS programs. You
can import:

• IMS DBDs and PSBs

• IDMS subschemas

• SQL DB2 objects

• VSAM files

You can also use APS Import Facilities to transfer BMS and MFS screens.
For more information about importing screens, see Paint Character
Screens.

Translate
database

information

The APS Import Facilities translate database information such as data
definitions and/or subschemas into a format usable for generating and
precompiling through APS. When the APS Import Facility transfers
database information, the Database Definition Interface (DDI) formats
the database information to use with APS programs.

Combine multiple
databases

If required you can combine multiple database environments into a
single subschema by giving each subschema the same name when you
User’s Guide

26 Chapter 3 Import Database Definitions

ugpubb.book Page 26 Tuesday, February 19, 2002 9:39 AM
import it using the APS database importers. Then simply reference that
name in any application that requires it.

The database importers:

• Extract information from your database definition.

• Load extracted information into the DDIFILE.

• Generate a DDISYMB file for use by Online Express and the
appropriate APS Generator.

• Generate record description copybooks of SQL DDL statements that
contain database and COBOL descriptions of each table or view in
the imported subschema.

Importing IMS PSBs and DBDs
Code DDI

statements before
you import

Before you import IMS database definitions, you must code DDI
statements to identify which IMS segments and COBOL copylib record
descriptions to import. You can import the following IMS database
information:.

Code DDI statements and import IMS database information as follows:

1 Copy the PSB and DBD into project.group.PSBSRC and DBDSRC files
respectively, and specify the PSB on the Application Painter. For
more information on the Application Painter, see Paint the
Application Definition.

Input Library Description

PSB project.group.PSBSRC Native PSB source; no
modification is necessary.

DBD project.group.DBDSRC Native DBD source; no
modification is necessary.

copylibs project.group.COPYLIB For each IMS segment in your
DBD, you must have a copylib
containing a COBOL record
description.
User’s Guide

Importing IMS PSBs and DBDs 27

ugpubb.book Page 27 Tuesday, February 19, 2002 9:39 AM
2 Copy into project.group.COPYLIB one or more COBOL copylib files
containing COBOL record descriptions for each IMS segment in your
DBD.

3 Code a DDI DBD statement to correspond to the DBD statement in
your database. For syntax information, see the "DDI Statements"
topic in the APS Reference.

4 Code a DDI REC statement for each segment you want to import to
correspond to the SEGM statement in your database and its copylib
as follows:

a Specify the name of the copylib record that corresponds to the
DBD segment identified on the DDI DBD statement using the
NAME parameter. The name of the copylib member that
contains the segment copylib record should be the same as the
segment name. If it is not, specify the copylib member name
with the COPY parameter.

b Set the &GEN-DB-REC-01 NAMES flag in the APS CNTL file,
APSDBDC, to indicates the level number of your top level
copylib records.

• If your top level copylib records begin with 01, set flag to 0.

• If your top-level copylib records do not begin with 01, set
flag to 1 and assign a unique 01-level name using the NAME
parameter. Alternately, use the GEN01 parameter to override
the value of this flag. Specify GEN01=n to indicate that the
top level copylib record level number begins with an 01 level
number or specify GEN01=y to indicate that the top level
numbers do not begin with 01.

For example, if your copylib record looks like this:

05 WS-EMPLOYEE-INFO.
 10 WS-EMPLOYEE-NO PIC 9 (06).

Code the DDI REC statement as:

DDI REC NAME=WS-EMPLOYEE-STUFF, SEG=EMPLSEG,
COPY=EMPLDATA

The generated output would look like this:

01 WS-EMPLOYEE-STUFF.
 05 WS-EMPLOYEE-INFO.
 10 WS-EMPLOYEE-NO PIC 9 (06).
User’s Guide

28 Chapter 3 Import Database Definitions

ugpubb.book Page 28 Tuesday, February 19, 2002 9:39 AM
For syntax information, see the "DDI Statements" topic in
the APS Reference.

5 Code a DDI FLD statement to correspond to the copylib record field
and each field statement in the DBD. If your database contains
secondary indexes, you can search on a secondary index field
without having to generate DDISYMB for the index database. For
syntax information, see the "DDI Statements" topic in the APS
Reference.

• If the XDFLD has multiple SRCH fields, do one of the following
to include SRCH fields:

• Code a DDI FLD statement. When there are multiple SRCH
fields, APS defaults the name value to the XDFLD value. Code
a dummy COBOL name that is unique from any copylib field
name of the SRCH fields in the NAME parameter to override
the default.

• Specify the DBD value of XDFLD using the IMSNAME
parameter.

For example, for the following DBD source:

XDFLD NAME=SOUCOX2, SRCH= (EMPLASNA,SOURCODE)

Code the DDI FLD statement as follows:

*DDI FLD NAME=INDEX-NO2,IMSNAME=SOUCOX2

Hint: Use the dummy name you specified on the DDI FLD
statement in database commands to qualify on a secondary
index composed of multiple SRCH fields.

• If the XDFLD has one SRCH field, code DDI DBD and DDI REC
statements only. It is not necessary to code a DDI FLD statement
for the XDFLD because the APS Generator refers to the SRCH
field definition. Note: If you write a database command against
a PCB that uses a secondary index, use the proper COBOL name
for the index field to be qualified upon. The APS Generator
recognizes a secondary index by the presence of the PROCSEQ
or INDICES parameters, and generates segment search
arguments (SSA) naming the IMS XDFLD.

Code DDI for
logical

relationships

6 If necessary, you can code DDI statements for IMS logical DBDs and
PSBs that reference IMS logical relationships as follows:

a Code DDI DBD statement.
User’s Guide

Importing IMS PSBs and DBDs 29

ugpubb.book Page 29 Tuesday, February 19, 2002 9:39 AM
b Code a DDI REC statement. Do not include information for
segments in a logical DBD if the logical segment has a single
physical source segment or the same IMS name as its physical
source segment. Note: The APS/IMS Generator does not validate
IMS logical Insert/Delete/Replace rules.

7 Place DDI statements in project.group.DDISRC.

8 Access the IMS Database Importer. To do so, from the APS Main
Menu, enter 2, Dictionary Services in the Command field. On the
Dictionary Services screen, enter 1, Import Facilities in the Command
field. Enter 2, IMS on the Import Facilities screen.

9 On the IMS Importer screen, type the DBD member name in the
Member field and enter 1, Load DBD Definitions and *DDI
statements, and generate DBD in the Option field. APS reads,
extracts and stores the DBD and DDI statement information in the
DDIFILE.

10 After option 1 completes, enter 2, Load PSB definitions and
Generate PSB and DDISYMB in the Option field. This option
references the information in the DDIFILE and reads, extracts, and
translates PSB information into DDI symbols and stores it in
project.group.DDISYMB.

Supplementing or Overriding DDI
Statements
When you import a DBD, you can write DDI statements that assign a set
of COBOL record and field names to each segment and field in the PSB.
Depending on what you want your program to do, you can supplement
or override these names with additional DDI statements. For example, if
you must maintain multiple positioning on a segment type, use more
than one PCB to reference the same segment thereby maintaining
multiple positioning. You need at least two areas in Working-Storage in
which to retrieve the same segment. This way the retrieval of one
segment will not overlay the Working-Storage area of the same
segment retrieved at a different position in the database. Another
example is multiple programs that reference the same segment type,
but some programs must use different record descriptions of the
segment. In this case, you can override the names defined in the
original DDI statements on a program by program basis.
User’s Guide

30 Chapter 3 Import Database Definitions

ugpubb.book Page 30 Tuesday, February 19, 2002 9:39 AM
To supplement or override record and field names write additional DDI
statements in a separate DDI statement member. Modify JCL in the APS
PSB utility member and reimport the database to include the new DDI
statements. To do so, follow the steps below.

1 Create a member in project.group.DDISRC dataset giving it the
same name as the program PSB.

2 Write DDI statements to assign the new set of names to the
segment. Use the format below, starting each statement in column
7.

-KYWD- 12-*----20----*----30---*----40----*----50---
*--
 *DDI PSB NAME=psbname
 *DDI PCB
 *DDI PCB
 *DDI PCB
 .
 .
 .
 *DDI REC SEG=segmentname,NAME=new-COBOL-recordname,
 COPY=new-copylibname
 *DDI FLD IMSNAME=name,NAME=new-COBOL-fieldname
 *DDI FLD IMSNAME=name,NAME=new-COBOL-fieldname
 *DDI FLD IMSNAME=name,NAME=new-COBOL-fieldname

The DDI statements are described below:

DDI Statement Description

*DDI PSB Specifies the program PSB.

*DDI PCB Positional or placeholder statements that
indicate the PCB for which you are assigning an
additional set of names. For example, to assign
names to the fourth PCB in the PCB, write four
*DDI PCB statements; do not write a *DDI PSB
statement for any subsequent PSB.

*DDI REC Specifies the following:

• Segment name as it appears in the program
PSB.

• New COBOL record name of the segment.

• New copylib name for the new COBOL
record.
User’s Guide

Importing SQL DB2 Objects 31

ugpubb.book Page 31 Tuesday, February 19, 2002 9:39 AM
3 Copy the APS PSB utility member, &APSPRE..ISPSLIB(SSMXPSB), to
the dataset that is concatenated before &APSPRE..ISPSLIB.

4 Modify the copy of SSMXPSB as follows:

• Add the parameter parm=’ddi’ to the //DDIIMS statement so
that it reads as follows:

//DDIIMS EXEC PGM=DDIIMS,REGION=1024k,PARM=’DDI’,
 COND=((0,LT,PSBGEN),(O,LT,LINK))

• Change the //DDICARDS DD DUMMY statement to the
following:

//DDICARD DD DISP=SHR,DSN=&DDIPRE..DDISRC(&SSMDDI)

5 Select option 2.1.2 to display the APS IMS Database Importer. Enter
the program DBD name in the Member field and execute option 1,
Load DBD Definitions and DDI Statements, and Generate DBD.

6 After option 1 completes, execute option 2, Load PSB Definitions
and Generate PSB and DDISYMB.

7 Return to the READY prompt and restart APS.

Importing SQL DB2 Objects
Import DB2 object

to the common
data area

The SQL Importer lets you import DB2 objects stored in the DB2 system
catalog to a separate staging area in APS. This staging area, known as
the APS common data area, is where you create and generate
subschemas for imported DB2 objects using the SQL Subschema
Maintenance utilities. For more information about these utilities, see
the Administrator’s Guide: Chapter 3, "Managing APS Facilities and
Libraries."

*DDI FLD Specifies the following:

• IMS field name as it appears in the program
PSB.

• New COBOL name of a field in the new
COBOL record. Write one statement per
field.

DDI Statement Description
User’s Guide

32 Chapter 3 Import Database Definitions

ugpubb.book Page 32 Tuesday, February 19, 2002 9:39 AM
You can import the following DB2 object types using the SQL Importer:

• Alias (object only)

• Database

• Index (object only)

• Storage group

• Table and table space

• View (object only)

Import DB2 objects as follows:

1 From the APS Main Menu enter 2, in the Option field. APS displays
the Dictionary Services screen. Enter 1 in the Option field. APS
displays the Import Facilities screen. Enter 1 in the Option field. APS
displays the SQL Importer screen. Enter 1 in the Option field to
display the DB2/DBP Object Import screen.

2 In the Command field, type the number that corresponds to the
object type you want to import.

3 Type the name of the object you want to import in the Object Name
field. If you do not know the name of the object, leave this field
blank and press Enter. The SQL Importer displays the DB2 Object List
screen. This screen displays data set information on the object types
in the DB2 system catalog.

4 Select objects from the list by typing an s to the left of each desired
object name. You can scroll the screen using the ISPF UPnn and
DOWNnn commands and by setting the SCROLL field to page, half
or csr. Selecting an object creates utility control cards that direct the
batch job to import the object to the common data area. To cancel
your selections and return to the DB2/DBP Object Import screen,
type cancel or can in the Command field and press Enter.

5 Type end in the Command field and press Enter or press the
appropriate PF key to view a screen that lists the objects you
selected from the object list. The SQL Importer displays the list of
selected objects. To delete a selection from this list, type d in the
selection field.
User’s Guide

Importing SQL DB2 Objects 33

ugpubb.book Page 33 Tuesday, February 19, 2002 9:39 AM
6 Return to the DB2/DBP Object Import screen by doing one of the
following:

• Press Enter

• Type end in the Command field and press Enter

• Press the appropriate PF key

7 Complete the remaining fields on the DB2/DBP Object Import screen
as described below and press Enter.

Field Value

Object Creator If you typed a name in the Object name field,
type the object creator’s TSO ID. Defaults to
your TSO ID.

Job Class Type the job submission class. Valid values are:

J1-J5 APS defines job cards J1-J5 on the Job
control cards screen. To access this
screen, type J in this field.

JC ISPF job card defined on the ISPF Log
andLists Defaults (0.2). You must
increment the job card letter.

Object Only Y(es) Default for Index, View and, Alias.
Imports the object specified in the
Command field or selected from the
Object List screen without associated
objects.

N(o) Default for Storage Group, Data Base,
Table Space, Table, and Column.
Imports the object specified in the
Command field or selected from the
Object List screen plus all objects
associated with the specified objects.

Report Only Y(es) Generates an import report for the
object specified but does not import
the object.

N(o) Default. Generates an import report in
addition to importing the objects
specified. For more information about
reports, see Generating a DB2/DBP
Object Import Report.
User’s Guide

34 Chapter 3 Import Database Definitions

ugpubb.book Page 34 Tuesday, February 19, 2002 9:39 AM
Generate
DDISYMB symbols

8 Access the APS Generator Options screen. From the APS Main Menu,
enter 0 in the Option field. APS displays the Options Menu. Enter 1
in the Option field. APS displays the Generator Options screen. Set
the SQL field to a valid SQL target; for example, DB2, SQLDS, or
SQL400. .

9 Access the SQL Importer screen and type 2 in the Option field.

10 The DDIFILE project and group for the DDISYMBs defaults to your
current user project. Ensure that your current project is identical to
the project and group under which the subschema was created.

11 Type the subschema name in the Member field and press Enter.

Note: For more information on setting generator options, see Setting
Options.

Generating a DB2/DBP Object Import
Report

Determine the
impact of

importing DB2
objects

You can determine the impact of importing a DB2 object to the
common data area by generating a DB2/DBP Object Import report. You
can generate this report before, during or after importing DB2 objects.
Reports generated after the import reflect all additions, deletions, or
name changes made to the dependent common data area objects at the
time of report generation.

The DB2/DBP Object report provides a cross reference of the objects in
the DB2 catalog and the APS common data area. It illustrates where a
DB2 object fits into the hierarchy of the DB2 system catalog versus

Submit Job Now Y(es) Default. Submits a batch job to import
the object specified in the Command
field or selected from the Object List
screen.

N(o) Generates the import job JCL and
stores it in the data set specified in the
following fields. This JCL can be used
for later job submission.

Field Value
User’s Guide

Importing VSAM Files 35

ugpubb.book Page 35 Tuesday, February 19, 2002 9:39 AM
where it fits into the hierarchy of the common data area. The cross
reference report lists objects in groups to illustrate hierarchical
dependency.

The DB2/DBP Object Import report can consist of:

• Two side-by-side comparison lists with the following information:

• The imported DB2 object and the DB2 system catalog objects
dependent upon it (those lower in the hierarchy).

• The imported object plus common data area objects that are
dependent upon it after it is imported.

• Two side-by-side comparison lists of the DB2 and common area
objects that contain the imported object (those higher in the
hierarchy).

• A list of the associated common data area objects added since the
last import of the object type.

Special Considerations
• If your DB2 system supports referential integrity (DB2 version 2 and

higher), the SQL Importer also imports tables referenced by foreign
keys.

• When you generate an Object Import report, enter information in
all required fields of the DB2/DBP Object Import screen.

• The dependent common data area objects are listed under the
report column titled DBP Object.

Importing VSAM Files
Code DDI

statements before
importing

Before you import VSAM files, you must code DDI statements. The DDI
statements identify the VSAM file and the COBOL copylib record
descriptions you want to import. For each VSAM file record, you must
have a copylib file that contains a COBOL record description. These
copylib files must reside in project.group.COPYLIB.
User’s Guide

36 Chapter 3 Import Database Definitions

ugpubb.book Page 36 Tuesday, February 19, 2002 9:39 AM
Code DDI statements and import your VSAM file information as follows:

1 Copy the copylib file(s) that contain the COBOL record descriptions
for the VSAM file(s) into project.group.COPYLIB COBOL.

2 Code a DDI VSM statement to correspond to the VSAM file external
ddname. This statement identifies VSAM file attributes. You can
specify parameters to generate IDCAMS. For syntax information, see
the "DDI Statements" topic in the APS Reference.

3 Code a DDI REC statement for each copylib record to correspond to
the copylib record name and copylib filename with the longest
MAXLEN. For syntax information, see the "DDI Statements" topic in
the APS Reference.

4 If your top-level copylib records do not begin with 01, set global
flags &VS-GEN-01-USING-RECNAMES and GEN-DB-REC-01-NAMES
and GEN-DB-REC-01-NAMESin APS CNTL files APVSAMIN and
APSDBDC to yes.

5 If the VSAM file you want to import is keyed, code a DDI IDX
statement for each index that corresponds to keyed copylib field
name and copylib file name. All DDI IDX statements must
immediately follow the DDI REC statement. Write overlapping
record keys as ordinary DDI IDX statements. APS generates IDCAMS
KEYS keyword according to the OFFSET and KEYLEN keywords on
the DDI IDX statement. For syntax information, see the "DDI
Statements" topic in the APS .

6 Code a DDI SUB statement to correspond to the copylib record
name(s) and VSAM file external ddname. This statement defines a
subschema for your VSAM file. Note: To define a subschema with
multiple VSAM files, assign a RECORD keyword to each VSAM file
you include. For syntax information, see the "DDI Statements" topic
in the APS .

7 Assign a unique subschema name and enter it in the Application
Painter field, SBSC/PSB.

8 Place the DDI statements in project.group.DDISRC.

9 Access the VSAM Importer. From the APS Main Menu screen, enter
2, Dictionary Services in the Option field then enter 1, Import
Facility then enter 3, VSAM.

10 From the APS/VSAM File Importer screen, enter the DDISRC name
(the member name) in the member field, and enter 1 Load DDI
User’s Guide

Importing IDMS Database Definitions 37

ugpubb.book Page 37 Tuesday, February 19, 2002 9:39 AM
Information From DDISRC in the option field. APS reads, extracts
and stores the DDI statement information in the file DDIFILE.

11 After option 1 completes, execute option 3 - Generate DDISYMB
Symbols From DDIFILE. APS reads, extracts, and translates DDIFILE
information into DDI symbols, and stores them in
project.group.DDISYMB.

12 Generate IDCAMS, enter 2, Generate IDCAMS Input Into Amserv in
the option field after step 5 completes. The IDCAMS option
generates IDCAMS for all files that the subschema references, but
more than one subschema can contain a given file. Tailor the
IDCAMS so no existing files are deleted. Store the IDCAMS source in
your AMSERV data set.

Importing IDMS Database Definitions
Translate
database

definitions

The IDMS Importer translates IDMS database definitions from your
IDMS dictionary into a format usable for generating and precompiling
through APS.

Import your IDMS data definitions as follows:

1 Ensure that the IDMS subschema resides in your IDMS dictionary
(IDD).

2 Access the IDMS Importer. From the APS Main Menu screen, enter 2
in the Option field. APS displays the Dictionary Services screen. On
this screen , enter 1 in the Option field. APS displays the Import
Facility screen. On the Import Facility screen, enter 5 in the Option
field. APS displays the IDMS Importer screen.

3 Enter the IDMS subschema name in the Member field. You can keep
or change the displayed IDMS schema name and version number.

4 If you are importing IDMS12.0 subschemas, ensure that the dataset
name of the subchema appears in the IDMS 12.0 SYSIDSM DSN field
on the IDMS Options panel.

5 Enter the database name that contains the subschema in the IDMS
Dictionary field.
User’s Guide

38 Chapter 3 Import Database Definitions

ugpubb.book Page 38 Tuesday, February 19, 2002 9:39 AM
6 Enter 1, Import IDMS Subschema from IDD and Generate DDISYMB,
in the Option field.
User’s Guide

39

ugpubb.book Page 39 Tuesday, February 19, 2002 9:39 AM
4 Paint Character Screens

This chapter contains the following sections:

• Screen Painter Concepts

• Painting a Screen

• Painting Field Edits

• Creating and Running a Screen Flow Prototype

• Modifying Screen Layouts

• Setting Parameters for Generation

• Importing BMS Mapsets

Screen Painter Concepts
Develop screens

interactively
The APS Screen Painter lets you paint character-based screens that are
intuitive and easy to use. You first paint text, input/output fields, and
then blocks of fields that accept multiple record occurrences. You then
specify field names, field attribute and edit criteria, and generation
parameters. The APS Generators retrieve this screen information from
the Application Dictionary to produce native screen source code.

Paint screen fields A character screen consists of fields and blocks of fields that you paint
on a blank screen. You paint two types of fields in the APS Screen
Painter:

• Input/Output (I/O) fields that let end users view, add, update, and
delete information. You paint I/O fields by typing a string of Xs.

• Text fields that display text, such as prompts for I/O fields, column
headings, screen headings, section headings, and explanatory text.
You paint text fields by typing any text you want.

Application Screen with Text and I/O Fields shows a sample application
screen with I/O fields and text fields.
User’s Guide

40 Chapter 4 Paint Character Screens

ugpubb.book Page 40 Tuesday, February 19, 2002 9:39 AM
Figure 4-1. Application Screen with Text and I/O Fields

Create repeated
record blocks

Your screens can also include repeated record blocks that accept or
display multiple occurrences of one or more records. With a simple
command, you can repeat a block of one or more source row as many
times as necessary. A repeated record block generates a table in
Working-Storage.

Sample Application Screen with a Repeated Record Block shows a
repeated record block created from the row of I/O fields in Application
Screen with Text and I/O Fields.

Figure 4-2. Sample Application Screen with a Repeated Record Block
User’s Guide

Screen Painter Concepts 41

ugpubb.book Page 41 Tuesday, February 19, 2002 9:39 AM
When you create a record block, you do not need to paint and assign
characteristics to each field individually--all fields reflect the
characteristics of the source row. For example, changing the length of
the Order Number field changes the length of all fields in the column.

Choose design
options

The APS Screen Painter provides editing and design options to help you
paint the screen. For example, you can specify where the Command
field automatically appears on your screen, and can determine whether
your text displays in upper case, lower case, or both.

Access online help Additionally, the Screen Painter has an extensive help facility that you
can access from your screen by pressing PF1.

Field Attributes
Define 3270

attribute support
APS lets you assign field attributes, such as field protection, brightness,
cursor positioning, and color, to both I/O and text fields. The APS Screen
Painter supports full and extended 3270 attribute capabilities,
including:

• Color

• Underline, blinking, and reverse video features

• Cursor positioning when the screen displays to the end user

• Bright and dark intensity

• Numeric keyboard locking

• Field protection

• Assignment of initial value

• Light pen sensitivity

APS assigns default attribute values to each field for you. Alternatively,
you can quickly override the default by entering the values you want, as
illustrated in Field Attributes Screen.
User’s Guide

42 Chapter 4 Paint Character Screens

ugpubb.book Page 42 Tuesday, February 19, 2002 9:39 AM
Figure 4-3. Field Attributes Screen

Field Edits
Define the

internal, input,
and output data

representation

Field edits let you define the display and storage characteristics for I/O
fields. Field edits can validate input data and format that data for
storage and output. You can assign characteristics, such as an internal
picture, output picture, edit mask, or date format. Or, you can test for
specific values or a range of values.The internal data representation
specifies storage characteristics for data in a field. Input and output
data representations let you specify the type of data that users can
enter or that a field can display. For example, an input data
representation for a field may permit a user to enter numbers from 1 to
1,000; an output data representation may require that data display a
dollar sign, decimal point, and two places following the decimal point.

You can also code your own edit routines and apply them to multiple
screens across any number of application systems. APS field edits ensure
that entries match specified definitions. Some fields, however, require
specialized testing. For example, if a field has alternate formats, no
single field edit can confirm the validity of all possible entries. In such a
case, you can write an application edit that verifies all legal entries. Or,
you can select a predefined edit from a centralized application edit
listing.

Field Selection Screen for Screen Field Editing shows the available edit
categories.
User’s Guide

Screen Painter Concepts 43

ugpubb.book Page 43 Tuesday, February 19, 2002 9:39 AM
Figure 4-4. Field Selection Screen for Screen Field Editing

Global Data Elements
Select I/O field

definitions
You can select global I/O fields, complete with definitions, attributes,
text prompts, and edits, from the APS Data Element Facility. At
generation time, APS picks up the definitions in the Data Element
Facility.

Figure 4-5. Data Element Facility Listing of I/O Fields

If you modify a global field on your screen, it becomes a local field. APS
then stores the field definition as part of your screen member. The local
User’s Guide

44 Chapter 4 Paint Character Screens

ugpubb.book Page 44 Tuesday, February 19, 2002 9:39 AM
screen field does not change when the original global field in the Data
Element Facility changes.

Know your site
and project

standards

Depending on how your site or project standard implements the Data
Element Facility, you can do some or all of the following:

• Create and modify your own I/O fields.

• Select I/O fields from the Data Element Facility.

• Assign field attributes, assign field edits, or perform other
modifications to I/O fields selected from the Data Element Facility.

Before you paint your screens, check with your APS Administrator or
Project Leader to determine which of these methods you can use to
create and modify I/O fields. The procedures in this chapter cover all
methods.

Scenario Prototype

Review screen
sequence with

users

After you paint several application screens, you can use the APS
Scenario Painter to create and run an application model, with or
without data. Your end users can view a typical production sequence of
screens, enter data into I/O fields, and pass entries between the screens.
You do not need to assign field attributes and edits or generate your
screens before running screen flow scenario prototypes.

Create the
prototyping

sequence

To create a scenario prototype, you list the screens in your application in
the order you want to view them. For example, if you run the scenario
in Screen Listing in Scenario Painter, the Customer Order Main Menu
displays first, followed by the Customer Record Maintenance screen--
just as if an end user requested the screen from the menu. The
remaining screens display in sequence and the prototype returns to the
menu to exit the application.

Figure 4-6. Screen Listing in Scenario Painter
User’s Guide

Screen Painter Concepts 45

ugpubb.book Page 45 Tuesday, February 19, 2002 9:39 AM
Dynamically
change prototype

at run time

As you run the prototype, you can make changes to correct errors and
meet new user requirements by:

• Displaying application screens in any sequence

• Creating and inserting new application screens

• Changing an existing screen

• Entering data in screens

Simulate
application data

During the prototype, you can enter data in screen fields and pass the
data to other screens. In Entering Sample Input Data, the prototype
displays the second screen of an 11-screen scenario with user-entered
data. When you enter data during a prototype session, you can save it,
and reuse it to simulate the movement of data. All data you enter
automatically becomes available to other screens that contain
identically named fields.

Figure 4-7. Entering Sample Input Data

Target-Specific Parameters
Tailor screen

generation
The APS Screen Generator takes your designs from the APS Screen
Painter and generates native map definitions. When you are ready to
generate, you specify parameters that tailor your screen for the CICS,
DDS, IMS DC, ISPF Dialog, or ISPF prototyping target environment.

For any environment, you can:

• Print expanded assembler macros.
User’s Guide

46 Chapter 4 Paint Character Screens

ugpubb.book Page 46 Tuesday, February 19, 2002 9:39 AM
• Retain field names as assembler labels.

• Unprotect I/O fields for prototyping.

• Modify I/O field attributes at run time.

• Create a system message field.

• Change how text fields display at run time.

CICS-specific
options

For the CICS environment, you can also:

• Generate an assembler END statement.

• Define a unique transaction ID.

• Specify a mapset name.

• Indicate the starting line of the map on the physical screen.

IMS-specific
options

For the IMS environment, you can also:

• Generate an assembler END statement.

• Specify standard device characters for different terminals and
printers.

• Provide a field for cursor feedback.

• Generate MFS code for logical page requests.

• Define MFS system literals.

• Rearrange the order of input message fields (MID/MOD).

• Assign trancodes, IMS commands, or logical paging commands to PF
keys.

• Construct MFS trancodes.

ISPF-specific
options

For the ISPF Dialog environment, you can also:

• Generate native definition statements to override ISPF defaults.

• Provide tutorial help panels.

• Control PF key processing.
User’s Guide

Painting a Screen 47

ugpubb.book Page 47 Tuesday, February 19, 2002 9:39 AM
Painting a Screen
Paint an application screen following the steps below. After step 1, you
can perform some or all of the steps in any order.

Access the screen 1 Access the Screen Painter to create or modify a screen in one of the
following ways:

• From the Application Painter, enter s in the selection field to the
left of the appropriate screen name.

• From the Painter Menu, type e in the Command field, sc in the
Type field, and the screen name in the Member field. Then press
Enter.

Apply screen
design options

2 To specify your editing session options, type profile in the Command
field. APS displays a screen displaying the current editing session
options in your user profile.

3 Specify editing session options, as follows:

Option Description

Command Location Specify where the Command field appears -
enter top for the top-left corner or bottom
for the bottom-left corner.

Caps on/off On Convert text fields to upper case.

Off Preserve or restore text fields as you
enter them.

Nulls on/off On Insert data directly into a row.

Off Fill rows with spaces.

Keys on/off On Display the Screen Painter function
key definitions at the bottom of the
screen.

Off Do not display keys.
User’s Guide

48 Chapter 4 Paint Character Screens

ugpubb.book Page 48 Tuesday, February 19, 2002 9:39 AM
4 Press PF3 to set your selections and return to your screen. The
selected options remain in effect for all application screens until you
change them, either in the current editing session or a subsequent
one.

Paint text fields 5 To paint a text field, position the cursor where you want the field to
begin and type the text. Text fields can consist of any characters,
including special characters. To enter one or more Xs in a text field,
you must distinguish the text from an I/O field by putting an
underline character on either the left or right side of the X, for
example, e_xit.

Paint I/O fields 6 To paint an I/O field, position the cursor where you want the field to
begin, and type Xs for the maximum length of the field. I/O fields
can have as many characters as can fit on one row of your screen,
excluding column 1. Note: You can name the field when assigning
field attributes; instructions are later in this procedure.

7 To change the length of an I/O field, move the cursor to the Xs
designating the field, and type in your changes. You can space over
or delete the Xs, or extend the field with more Xs.

Select predefined
I/O fields

8 To select an I/O field from the Data Element Facility, press PF9 from
anywhere on your screen. The Data Element List screen appears on
the right side of your screen. An asterisk (*) preceding a name
indicates fields that already exist on this screen, and therefore are
not available.

Display field name Yes Activate the Field Name screen. As
you move the cursor between fields
by pressing the Enter key, this screen
displays the name of the current
field. Pressing PF3 removes the
screen from display, but keeps this
option active.

No Do not display the field name. To
perform text editing functions, such
as typing in a new field or moving
fields with the space bar, set this
option to No.

Option Description
User’s Guide

Painting a Screen 49

ugpubb.book Page 49 Tuesday, February 19, 2002 9:39 AM
9 Navigate the Data Element List screen as follows:

• Enter L xxx in the Command field to locate a portion of the data
element list, beginning with field names matching the letters
you specify. For example, L ERR redisplays the data element list
with the field ERR-MSG as the first entry.

• Press PF7 to scroll backward within the list.

• Press PF8 to scroll forward within the list.

• Press the Tab key or space bar to move to the next element
within the list.

10 To display a field definition, type ? in the selection field preceding
the field name(s) you want. The Info screen, as shown in Data
Element Facility Information Screen, displays the information for
the selected screen field. To exit the current Info screen, press either
PF3 to take you to the next Info screen if you entered ? on several
fields, or PF4 to position you back in the data element list.

Figure 4-8. Data Element Facility Information Screen

11 To select fields, type s in the selection field preceding the field
names you want to include on your screen, and press Enter. A right
arrow (>) displays in front of each field you selected. To delete a
selection, type d in the selection field, and then press Enter.
User’s Guide

50 Chapter 4 Paint Character Screens

ugpubb.book Page 50 Tuesday, February 19, 2002 9:39 AM
Figure 4-9. Selecting Fields from the Data Element List

12 When your selection is complete, press PF3. A screen displays
information on the first field you selected from the data element
list. The Text field displays the text prompt or label for the field. The
Length field displays the field length, excluding any accompanying
text from the Text field.

Figure 4-10. Field Selected from the Data Element List

13 Position the cursor where you want to place the field and press
Enter. If the field has a text prompt, the prompt begins at the cursor
location.

14 The selected field screen presents the fields you selected in
alphabetical order. You can use PF keys to manipulate the display of
selected fields and the location of the information screen (so that it
is not in your way as you position a field), as follows:

PF3 Cancel any selected fields not yet placed on the screen.

PF5 Display first field.
User’s Guide

Painting a Screen 51

ugpubb.book Page 51 Tuesday, February 19, 2002 9:39 AM
Create repeated
record blocks

15 To create a repeated record block from any row(s) of I/O fields you
paint, position the cursor on the source row--the top row to be
repeated--and press PF7. The Repeated Block screen displays.

Figure 4-11. Creating a Repeated Record Block

16 Complete the fields in the Repeated Block screen as follows:

• Enter the number of source rows. Each row in a repeated record
block encompasses the entire width of the screen.

• Enter the total number of times the block of source rows should
occur. For example, a record block that contains two source rows
and has five occurrences produces ten lines on the screen. You
can create a record block covering as many consecutive blank
lines as are available on the screen.

17 Press Enter to create the record block indicated, or press PF3 to exit
the screen without creating the record block. Creating a Repeated
Record Block shows the record block specified in Repeated Record
Block.

PF6 Display last field.

PF7 Display previous field.

PF8 Display next field.

PF10 Move information screen counter-clockwise.

PF11 Move information screen clockwise.
User’s Guide

52 Chapter 4 Paint Character Screens

ugpubb.book Page 52 Tuesday, February 19, 2002 9:39 AM
Figure 4-12. Repeated Record Block

Assign a screen
title

18 To assign a descriptive screen title that appears when you prototype
in the Scenario Painter, enter title or t in the Command field. The
Screen Title screen displays. Type your description in the Title field,
and press PF3 or enter end on the Screen Title screen Command
field. The description does not appear on your screen.

Prototype screen
flow for your end

user

19 To prototype your screen flow in a scenario prototype to your end
user, see Creating and Running a Screen Flow Prototype. You do not
need to assign field attributes or field edits, or generate the screen,
to do a scenario prototype--you can prototype anytime from this
point on in the procedure.

Assign field
attributes

20 To assign field attributes by modifying the default attribute values
for your text and I/O fields, you can:

• Display attributes for a specific I/O field or text field. To do so,
position the cursor on that field and press PF12. Or, to display
attributes for the field nearest the current location of the cursor,
press PF12. You go to the nearest I/O field, skipping any text
fields unless the attributes were previously modified.

Field Attributes Screen - Single Field Display illustrates the Field
Attributes screen for a single field.
User’s Guide

Painting a Screen 53

ugpubb.book Page 53 Tuesday, February 19, 2002 9:39 AM
Figure 4-13. Field Attributes Screen--Single Field Display

• Display attributes for all fields. To do so, enter FA in the
Command field. A full-screen display of field attributes displays,
as illustrated in Field Attributes Screen - Total Field Display.

Figure 4-14. Field Attributes Screen--Total Field Display

21 Modify attributes for all screen fields, as follows:

• To modify a field name or attribute, type over the existing
value. As soon as you modify the attributes of a field selected
from the Data Element Facility, the field becomes a local field
and is unaffected by any changes made to the field definition in
the Data Element Facility.

• To change attribute values for fields in a repeated record block,
modify the applicable fields in the source rows.
User’s Guide

54 Chapter 4 Paint Character Screens

ugpubb.book Page 54 Tuesday, February 19, 2002 9:39 AM
• To modify extended attributes for I/O fields, such as color and
highlighting, press PF5 from the Field Attributes screen or scroll
the full-screen Field Attributes screen to the right.

Valid attribute values are:

Attribute Description and Values

Name I/O field name; maximum 16 characters. Text
fields do not have names because programs do
not reference them.

Hints:

• If you give a screen field the same name as
its corresponding database field, APS Online
Express automatically maps the relationship
for you, prefixing the field name with the
screen name; otherwise you must map the
screen field to the database in your program.

• If the same field appears on several screens,
give it the same name on each screen. APS
lets you pass data between identically
named fields on different screens during
scenario prototyping and ISPF prototyping.

Length Display field only; to change field length, move
the cursor to the Xs designating the field and
type in your changes. You can space over or
delete the Xs representing the field, or extend
the field with more Xs.

Intensity B Bright.

N Normal (default).

D Dark.

Type U Unprotected (default); field is for both
input and output.

P Protected; field is output only.

T Text field with default attributes
changed.
User’s Guide

Painting a Screen 55

ugpubb.book Page 55 Tuesday, February 19, 2002 9:39 AM
MDT Applies to IMS and CICS only. The modified data
tag tells the terminal when to return field data.
When this tag is True (T) for a field, the terminal
always sends back data; when False (F), the
terminal returns data only if the data changes.

T Default for I/O fields; data returned

F Default for text fields; returns blanks
unless end user modifies the field.

Note: Set all fields to True when using Field Edits.

Value Initial value for screen field; maximum is field
length or 27 characters, whichever is less.

APS edits Display field indicating if any field edits were
assigned to the screen field.

Num Lock T Activate keyboard numeric shift lock

F Deactivate numeric shift lock (default)

Light Pen T Light pen detectable.

F Not light pen detectable (default).

Init cursor F Do not position cursor on this field
when the program sends the screen.
Default for all but the first I/O field.

T Position cursor on this field. Default for
first I/O field.

Color BL Blue

GN Green

NU Neutral

PK Pink

RD Red

TQ Turquoise

YL Yellow

Attribute Description and Values
User’s Guide

56 Chapter 4 Paint Character Screens

ugpubb.book Page 56 Tuesday, February 19, 2002 9:39 AM
Highlight These are mutually exclusive fields that specify
the intended attributes for highlighting a field:

BL Blinking

UL Underline

RV Reverse video

Valid values are:

T Turns highlighting On

F Turns highlighting Off

Because the fields are mutually exclusive, you
can set only one field to True. The other two
fields must be set to False.

Modify IMS only.

F Program cannot modify extended
attributes at run time (default).

T Program can modify extended
attributes. APS generates the extra
attribute bytes required.

Format For KANJI use only. Format field characters for a
double-byte character set (DBCS) terminal as
follows:

Blank Single-byte characters only (default)

D Double-byte characters only

M Single- and double-byte characters
combined

Ruledline For KANJI use only. Place lines around the field
on a DBCS terminal, as follows:

spaces No lines

L Left side of field

R Right side of field

O Over field

U Under field

B Surround field

00-0F Combination of lines

Attribute Description and Values
User’s Guide

Painting a Screen 57

ugpubb.book Page 57 Tuesday, February 19, 2002 9:39 AM
22 To cycle through and assign attributes to all your I/O and text fields
from the Field Attributes screen, press PF12. The screen always
appears above or below the active field; the asterisk in the screen
points to the active field. Each time you press PF12, the Screen
Painter saves the changes made to the current field and moves to
the next field. To remove changes for the current field, enter cancel
in the Command field.

23 If you assign attributes on the full-screen Field Attributes screen,
press PF3 or enter end in the Command field to exit and save your
changes, or enter can in the Command field to exit without saving
your changes.

Note: For more information on field attributes, see the "Attributes,
Screen Fields" topic in the APS Reference.

Create field for
system messages

24 To specify the system message field to display both system and
program messages, choose one of the following:

• Paint the system message field in any row. Name the field
SYSMSG. Assign the Protected field attribute to the field.

• Enter yes or sysmsg in the SYSMSG Message field on the Screen
Generation Parameters screen; APS automatically creates the
field on the bottom line of your screen.

Paint Online
Express program

fields

25 If you want the end user to execute program functions by entering
a function code on the screen, paint function code fields on your
screen. To do so, see Define Database Access.

26 For your program to execute database functions, your screen
generally needs fields for savekey storage. To paint savekey storage
fields, see Defining Savekey Storage and a Commarea.

Assign field edits 27 To assign screen field edits, choose one of the following:

• Enter fe in the Command field. The APS Edits Field Selection
screen displays, listing all fields defined for your screen. From
there you can select a field for edit specification.

• From the Field Attributes screen, press PF4, or enter fe in the
Command field. The Edit Selection screen displays for that field.
From here you can view, delete, or copy existing edits for your
field, or transfer to a specific edit screen.

See Painting Field Edits for information.
User’s Guide

58 Chapter 4 Paint Character Screens

ugpubb.book Page 58 Tuesday, February 19, 2002 9:39 AM
Assign generation
and DC target

parameters

28 To assign screen generation parameters for your DC target, enter
pm in the Command field. The Screen Generation Parameters screen
displays with default parameter values. See Setting Parameters for
Generation for details.

End the session 29 Choose one of the following to complete your work in the Screen
Painter:

• To save your screen and exit, press PF3 or enter end in the
Command field.

• To save your screen design and remain in the Screen Painter,
enter save in the Command field.

• To exit the Screen Painter without saving your screen design,
enter can or cancel in the Command field.

Print screen
documentation

30 To print a hardcopy report, see the "About APS Reports" topic in
the APS Reference.

Special Considerations
• To create a screen quickly, you may want to copy an existing APS

screen and modify it. To do so, use the Create Like function on the
APS Painter Menu.

• If APS cannot save your screen, for example, if you don’t have
enough disk space, a screen lets you specify another data set for
storing your screen. Then, before you can access the screen again,
you must copy it back to your project.group.APSSCRN file.

• Instead of changing editing options in the profile screen, you can
enter commands in the Command field as follows:

Command Description

bottom Move Command field to the bottom left corner of
the screen.

caps off Restore text to upper/lower case as entered.

caps on Convert text to upper case.

keys off Do not display APS-assigned PF key definitions.

keys on Display APS-assigned PF key definitions at the
bottom of the screen.
User’s Guide

Painting a Screen 59

ugpubb.book Page 59 Tuesday, February 19, 2002 9:39 AM
• To display a ruler to identify columns, type cols in the Command
field, place the cursor where you want the ruler to display, and press
Enter. The ruler may overlay painted text. To erase the ruler and
replace any overlayed text, enter reset in the Command field.

• APS reserves column 1 for attribute bytes in the generated screen
definition.

• I/O fields can have as many characters as can fit on one row of the
screen.

• APS allows a maximum of 500 fields per screen. The ISPF
prototyping environment allows a maximum of 25 1-byte fields out
of the 500 total.

• If you use the screen in an ISPF prototype or your DC target is ISPF
Dialog and you need to include an ampersand (&) in a text field:

• Paint the field as it should appear at run time.

• Then leave as many spaces at the right of the row as there are
ampersands in the row.

The Screen Generator generates two ampersands for every one you
paint. Once the screen is online, ISPF deletes the extra ampersands.

• If you change the field length for a field with assigned field edits, a
screen asks you if you want to delete, change, or keep the field edits
as they are. Selecting the change option transfers you directly to the
Field Edit facility.

nulls off Fill rows with spaces.

nulls on Clear rows so you can insert data.

top Move the Command field to the top left corner of
the screen.

Command Description
User’s Guide

60 Chapter 4 Paint Character Screens

ugpubb.book Page 60 Tuesday, February 19, 2002 9:39 AM
Painting Field Edits
Assign screen field edits following the steps below:

Access the field
edit facility

1 From your application screen, access the Field Edit Facility in one of
the following ways:

• Enter fe in the Command field. The Field Selection screen
displays, listing all fields defined for your screen. An asterisk to
the right of a field indicates that edit specifications exist for the
field in that category.

Figure 4-15. Field Selection Screen

• From the Field Attributes pop-up screen, press F4, or enter fe in
the Command field. The Edit Selection screen displays a
summary of any edits assigned to that field. An asterisk to the
right of an edit name indicates that edit specifications exist.
User’s Guide

Painting Field Edits 61

ugpubb.book Page 61 Tuesday, February 19, 2002 9:39 AM
Figure 4-16. Edit Selection Screen

2 Depending on how you accessed the Field Edit facility in step 1, do
one of the following:

• From the Field Selection screen, transfer to an edit specification
screen by entering one of the options displayed on the screen to
the left of the field name.

• From the Edit Selection screen, enter an s next to the applicable
category.

From either screen you can select several fields at one time; they
process one after another. When the applicable screen displays,
enter values as appropriate; to do so, refer to the topic listed for the
category. Select an option as follows:

Option Description

Edit Selection Display the Edit Selection screen to see a
summary of edits for that field and transfer to
other edit specification screens. This is
available only from the Field Selection screen.

Internal Picture Display the Internal Picture screen to specify
the internal storage format. See "Related
Topics" below later for further information.

Input Editing Display the Character Input or Numeric Input
screen, depending on whether the internal
picture specification is character or numeric.
The internal picture default type is character.
Assign input field edits on these screens. See
"Related Topics" below for further
information.
User’s Guide

62 Chapter 4 Paint Character Screens

ugpubb.book Page 62 Tuesday, February 19, 2002 9:39 AM
Error Processing Display the Error Processing screen to specify
error messages and attributes to display when
the data for the field fails input edits. See
"Related Topics" below for further
information.

Application Edits Display the Application Editing screen to
create your own edit routine to process input
data. See the "Application Field Edit Routines"
topic in the APS Reference.

Output Editing Display the Character Input or Numeric Input
screen, depending on whether the internal
picture specification is character or numeric.
The internal picture default type is character.
Assign output field edits on these screens. See
the "Field Edits" topic in the APS Reference for
more information.

Application Edits Display the Application Editing screen to
create your own edit routine to process output
data. See the "Application Field Edit Routines"
topic in the APS Reference for more
information.

Values Or
Conversions

Display the Values or Conversion screen to
specify a valid value or range of values for
input data, or conversion values for either
input or output data. See the "Values,
Conversion Values, and Value Ranges" topic in
the APS Reference for more information.

Special Edits Display the Special Edits screen to assign date
or time specifications. This option is available
only from the Edit Selection window. See the
"Date and Time Field Edits" topic in the APS
Reference for more information.

Input and output
editing

Display the Character Input or Numeric Input
screen, based on the internal picture
specification, followed by the Character
Output or Numeric Output screen. To do this,
enter io next to a field on the Field Selection
screen. See the "Field Edits" topic in the APS
Reference for more information.

Option Description
User’s Guide

Painting Field Edits 63

ugpubb.book Page 63 Tuesday, February 19, 2002 9:39 AM
Copy field edits 3 To copy edits from another field, access the Edit Selection screen for
the field you are copying field edits to, and then enter copy in the
Command field. The Copy Function screen displays. Enter the field
name you are copying edits from; it must be the same length as the
current field. The current field inherits the edits of the copied field,
and loses any prior edits.

Delete field edits 4 Delete field edits in one of the following ways:

• To delete all field edits for all fields on the screen, access the
Field Selection screen, and then enter delete all in the
Command field. The Confirm Delete screen displays, where you
verify that you want to delete all field edits.

• To delete all field edits for a specific field, access the Edit
Selection screen for the field, and enter d after the Internal
Picture prompt. The Confirm Delete screen displays, where you
verify the deletion.

• To delete a specific field edit for a specific field, access the Edit
Selection screen for the field, and enter d to the right of the
field edit name. The Confirm Delete screen displays, where you
verify the deletion.

Specify global
error messages

5 Optionally assign a default error message for the screen to display
when the end user enters invalid data as follows:

a Access the Field Selection screen, and enter pm or parm in the
Command field. The Parm screen displays.

Figure 4-17. Parm Screen
User’s Guide

64 Chapter 4 Paint Character Screens

ugpubb.book Page 64 Tuesday, February 19, 2002 9:39 AM
b On the Parm screen, type the name of the field that displays the
error message.

c Enter the text to display when the data does not pass field edits
and enter the text to display when required data is not entered
in the appropriate fields.

d Specify the attribute values for fields that fail input edits; the
default assigns bright and cursor positioning on the field.

You can enter a field-specific error message by selecting the
Error Processing prompt on most field edit screens; see the
"Error Processing Messages" topic in the APS Reference for
information. These messages override the global screen
messages assigned in this step.

Specify bypass
options

6 To define conditions for bypassing input edits for the screen, press
Enter on the Parm screen. A subsequent Parm screen for bypassing
edits displays. You can define bypass conditions for one field per
screen; if any of these conditions occur, APS bypasses field edits for
the entire screen. If the field is in a repeated block, APS bypasses
edits for all fields in that row occurrence only.

Figure 4-18. Second Parm Screen
User’s Guide

Creating and Running a Screen Flow Prototype 65

ugpubb.book Page 65 Tuesday, February 19, 2002 9:39 AM
7 Complete the fields on this screen as follows:

Exit the Field Edit
facility

8 Choose one of the following to complete your field edits:

• To save your entries and return to the previous screen, press F3,
or enter end in the Command field.

• To return to the previous screen without saving any entries,
enter can in the Command field.

Creating and Running a Screen Flow Prototype
Test screen

sequence
Before you generate your screens, you can review their design and flow
with the end user in the APS Scenario Painter. Define a sequence of
screens, called a scenario, enter data in those screens, and display the
screens to the end user following the steps below. After step 1, you can
perform most of the steps in any order.

Access Scenario
Painter

1 Choose one of the following to access the Scenario Painter:

• To run an existing prototype, access the Application Painter
screen for your application and enter run scenarioname in the
Command field. The first screen in the prototype displays. Go to
step 6 to run the prototype.

Field Name Specify any field on the screen,
including a field in a repeated block, to
bypass.

Value(s) Specify the value or values that let end
users bypass input edits. Valid COBOL
reserved words are spaces, low-values,
and high-values.

Additional Value(s) Enter as many additional bypass values
that can fit on the line; separate each
value with a comma.

Program Function Keys Type s in the selection field to indicate
which PF keys the end user can press to
bypass the input edits.
User’s Guide

66 Chapter 4 Paint Character Screens

ugpubb.book Page 66 Tuesday, February 19, 2002 9:39 AM
• To create, modify, or review a scenario prototype definition:

• From the Painter Menu, enter CN in the Type field. Then
enter the name of the scenario in the Entity field or press
Enter to select from a list of scenarios. The prototype
definition you specify displays.

• From the Application Painter, enter CN scenarioname in the
Command field. The prototype definition for your
application displays. If this is a new prototype definition, the
Scenario Painter lists the screens as they appear in your
application definition.

Figure 4-19. Initial Application Prototype Definition

Define the
prototype

2 To display the titles that you painted in the Screen Painter, enter
retitle in the Command field. The titles display in the Screen Title
field.

3 To create the prototype definition to represent screen flow, use the
ISPF I(nsert), D(elete), C(opy), and M(ove) commands to reorder,
insert, and delete screen names until the prototype represents the
scenario you want to test. A prototype definition can include up to
160 screens.

4 To describe the screen for the end user, enter text in the User
Comments field. For example, a user comment might identify the
varying conditions under which the same screen displays. Initial
Application Prototype Definition shows the definition from
Scenario Prototype Definition, updated with sequence changes,
screen titles, and screen descriptions.
User’s Guide

Creating and Running a Screen Flow Prototype 67

ugpubb.book Page 67 Tuesday, February 19, 2002 9:39 AM
Figure 4-20. Scenario Prototype Definition

5 To save your prototype definition, enter save in the Command field.
To reset the screen flow to its sequence at the beginning of the
session, enter reset in the Command field.

Run the prototype 6 To run the prototype, choose one of the following:

• From the Scenario Painter, enter run in the Command field.

• From the Application Painter, enter run scenarioname in the
Command field.

The first screen in the scenario definition displays.

7 To display an line that displays scenario information at the bottom
of the screen, enter num in the top left corner of the screen. To hide
the information line, enter num off.

Figure 4-21. Prototype Information
User’s Guide

68 Chapter 4 Paint Character Screens

ugpubb.book Page 68 Tuesday, February 19, 2002 9:39 AM
In Prototype Information, the information line states:

8 To display screens consecutively, press Enter repeatedly until all
screens display. If a screen named in your prototype is not yet
painted in the Screen Painter, a message displays that information.

9 To transfer to the Screen Painter to create or modify a screen, enter
edit in the top left corner of the screen.

Demonstrate data
flow between

screens

10 To enter data and show data flow between screens, type the data,
followed by a space, in the Command area in the upper left corner
of the screen.

Figure 4-22. Entering the Data Command

11 Enter data in the I/O fields, as desired. The data you enter replaces
the Xs.

TDOJ Screen name assigned in Application Painter

6 Sequence number of screen in scenario from
prototype definition

11 Total screens in scenario from prototype
definition

CUSTOMER ORDERS
INQUIRY

Screen title painted in Screen Painter

BROWSE ONLY User comment entered in Scenario Painter
User’s Guide

Creating and Running a Screen Flow Prototype 69

ugpubb.book Page 69 Tuesday, February 19, 2002 9:39 AM
Figure 4-23. Sample Input Data

This data automatically appears in other screens that contain
identically named fields.

Figure 4-24. Passing Data in the Prototype

12 When simulating data flow in your application, type any command,
followed by a space, in the top left corner of the displayed screen:

Command Description

data The previous two steps and Entering the Data
Command, Sample Input Data, and Passing Data in
the Prototype illustrate this option.

This option erases the Xs designating I/O fields and
activates each field according to attributes
assigned in the Screen Painter. You can now enter
data in any field; this data automatically displays
in identically named fields on other screens.
User’s Guide

70 Chapter 4 Paint Character Screens

ugpubb.book Page 70 Tuesday, February 19, 2002 9:39 AM
Modify the screen
flow sequence

13 To modify the viewing sequence of the screens, type a command,
followed by a space, in the top left corner of the displayed screen.

14 After viewing the last screen in the scenario, press Enter to exit the
Scenario Painter.

dataoff Turn off data simulation and display the screen in
its painted format.

read Display the data saved by the most recently
executed SAVE command and execute the DATA
command. You can now enter or modify data in
any field.

save Store the current data entered in this scenario for
use in future prototyping sessions.

Command Description

Command Description

start, first Display the first screen in the prototype. When you
press Enter, the second screen displays, and so on.

last Display the last screen in the prototype.

end, can, quit Terminate the prototype and return to the
invoking screen.

number Display the screen in the position specified in the
prototype definition.

+increment
-increment

Display the screen before (+) or after (-) the current
screen, according to the prototype definition.

screenname Display the first occurrence of the specified screen
in the prototype definition.

+screenname
-screenname

Display the first occurrence of the screen specified
after (+) or before (-) the current screen.
User’s Guide

Modifying Screen Layouts 71

ugpubb.book Page 71 Tuesday, February 19, 2002 9:39 AM
Modifying Screen Layouts
Once you create a screen, you can easily change its layout. To do so,
follow the procedures below.

Delete a Field or Row

Delete screen fields and rows as follows:

• Write over any field or row using the space bar or other keys.

• Use the Delete key to erase all or part of a field or row.

• Place the cursor anywhere on an I/O field, and press PF6 to delete
the field. Press PF6 again to complete the delete.

• Place the cursor on a text field or space in a row, and press PF6 to
delete the row. Press PF6 again to complete the delete.

Modify a Repeated Record Block
Modify a repeated record block by following these steps:

1 Position the cursor anywhere within the record block and press PF7.
The Repeated Block Menu displays, as shown in Menu for Modifying
a Repeated Block.

Figure 4-25. Menu for Modifying a Repeated Block
User’s Guide

72 Chapter 4 Paint Character Screens

ugpubb.book Page 72 Tuesday, February 19, 2002 9:39 AM
2 Select one of the following options by entering its number in the
column preceding the first option listed.

Move or Copy a Field or Row
You can move, and if your site standard allows, copy I/O fields, text
fields, or entire rows, including those from repeated blocks, to any
location on the screen where there is sufficient space. To do so:

1 Position the cursor as follows:

• For an I/O field, place the cursor anywhere on the field and press
PF4 to move or PF5 to copy.

• For a text field, mark the boundaries of the text field with the
PF10 key. Press PF10 once to mark either the left- or right-most
character of the text field; then press PF10 again to mark the
opposite side of the field.

• For an entire row, place the cursor anywhere on the row, except
on an I/O field, and press PF4 to move or PF5 to copy.

• For a group of fields in a row, position the cursor on the left- or
right-most field in the group, as follows:

• At the first or last character of a text field

Option Select ... To ...

1 Change repeated
block

Display the Repeated Block pop-up
to change the number of rows or
occurrences in the record block.

2 Cancel repeated
block

Eliminate the record block and its
repeated rows. The original source
fields remain.

3 Cancel and retain
all rows in the
block

Eliminate the record block, but
retain every source field. The Screen
Painter gives each field a unique
name, and thereafter treats each as
a separate entity.

4 Exit Exit the screen without changing
the record block. This option is the
same as pressing PF3.
User’s Guide

Modifying Screen Layouts 73

ugpubb.book Page 73 Tuesday, February 19, 2002 9:39 AM
• Anywhere within an I/O field

Press PF10. Move the cursor to the opposite side of the group and
press PF10 again.

2 Using the arrow keys, position the cursor where you want to move
or copy data. APS inserts the row on that line; any previous data on
that line shifts down accordingly.

3 Press PF4 to complete the move or PF5 to complete the copy.

4 Alternatively, move a field to another location on the same row by
placing the cursor in front of the text or I/O field and either deleting
or inserting blank spaces to move the field to the left or right. In this
case, you must set the Profile screen field for Nulls to ON.

5 Alternatively, move or copy text fields by retyping the entry at a
new location and deleting the entry at the old location.

6 To cancel a move or copy at any time, press Enter.

Track Multiple Field Changes
If you add, delete, or modify several fields in the same row at the same
time, the APS Screen Painter may prompt you to identify the names of
some of the fields resulting from your changes. The Screen Field Name
Selection screen displays; the asterisk points to the field in question.

Figure 4-26. Screen Field Name Selection Screen
User’s Guide

74 Chapter 4 Paint Character Screens

ugpubb.book Page 74 Tuesday, February 19, 2002 9:39 AM
From this screen, select one of the following options by entering its
number in the column preceding the first option listed.

Setting Parameters for Generation
When you are satisfied with your screen designs, you can define the
parameters that the APS Screen Generator uses to generate the screens
for your data communications (DC) target environment. To do so, follow
the steps below. After step 1, you can perform most of the steps in any
order.

Access the Screen
Generation

Parameters screen

1 From the APS Screen Painter, enter pm (parameters) in the
Command field. The Screen Generation Parameters screen displays.
Screen Generation Parameters Screen displays default parameter
values for an application screen.

Select ... To ...

1 Assign the displayed value to the field. In fieldname, the
Screen Painter displays an existing field name that cannot be
assigned with certainty to a screen field.

2 Let the APS Screen Painter assign a default name to the
field. The default name reflects the row and relative position
of the field in that row: for example, A-ROW003-FLD002.

3 Default. If more than one existing field name cannot be
assigned with certainty to a screen field, you can cycle
through those field names by selecting option 3.
User’s Guide

Setting Parameters for Generation 75

ugpubb.book Page 75 Tuesday, February 19, 2002 9:39 AM
Figure 4-27. Screen Generation Parameters Screen

2 To assign or change any values, move the cursor to the applicable
position and type the value. Parameter values of T(rue) and Y(es)
are interchangeable, as are F(alse) and N(o).

Assign
parameters

3 Change parameter values that affect the screen in any environment,
as desired. Applicable parameters and valid values are:

Parameter Description and Values

Prt Asm Mac Expn F Default. Do not print
expanded assembler macros.

T Print macros.

No Assembler END F Default. Do not generate an
assembler END statement.

T Generate statement.

Retain Datanames F Default. Do not retain
painted field names as
assembler labels.

T Retain field names. Under
BMS or MFS, duplicate or
invalid names can occur due
to the maximum number of
characters that BMS and MFS
allow.
User’s Guide

76 Chapter 4 Paint Character Screens

ugpubb.book Page 76 Tuesday, February 19, 2002 9:39 AM
Exattr Modifble F Default. Do not modify
extended attributes at run
time.

T Allow modification at run
time; generate EXTATTR=YES
and extra attribute bytes in
DSECT.

Anything specified in this field has no effect
during prototyping.

Sysmsg Message NO or blank Default. Do not display
system messages.

YES or
SYSMSG

Display messages on last line
of the screen, if space is
available.

fieldname Display messages in
fieldname.

YES,row,
length|YES,
row|YES,,
length

Display message of up to
length characters on
specified row. Row default is
last line of screen. Length
can be from 40 to 70
characters or up to 131
characters for MOD5 screens.

Intensity Change the intensity of all text fields.

N Default. Normal

B Bright.

Color Change the color of all text fields.

NU Neutral

BL Blue

PK Pink

TQ Turquoise

RD Red

GN Green

Parameter Description and Values
User’s Guide

Setting Parameters for Generation 77

ugpubb.book Page 77 Tuesday, February 19, 2002 9:39 AM
Specify CICS
parameters

4 For a CICS target, assign parameters as follows:

Specify ISPF
prototype

parameters

5 For prototyping under ISPF, assign parameters as follows:

YL Yellow

Blink
Rvideo
Underline

Set only one field to T(rue) for text fields.
Blinking, reverse video, and underline are
mutually exclusive.

Parameter Description and Values

Parameter Description and Values

Associated Trans Specify an associated transaction ID; default
is the first four characters of the screen. If
more than one screen begins with the same
four characters, you need to define a unique
transid.

Mapset Name Override an APS-generated mapset name;
maximum seven characters. The default
mapset name reflects the number of
characters in the screen name, as follows:

4-character name: screennameSET
5-, 6-character name: screenname$
7-character name: screenname$; the $
replaces the seventh character

Line Starting line of the map on the physical
screen; default is 001; value cannot exceed
the screen depth.

Parameter Description and Values

Global Fld Unpro F Default. Protect all I/O fields for
prototyping.

T Unprotect all I/O fields.

Associated Pgm Name of the program receiving control from
the screen; default program name is
screenname.
User’s Guide

78 Chapter 4 Paint Character Screens

ugpubb.book Page 78 Tuesday, February 19, 2002 9:39 AM
Specify IMS DC
parameters

6 For an IMS target, assign parameters as follows:

Parameter Description and Values

Device Type Standard device characters for different
model terminals and printers. Defaults
are IBM-recommended device
characters. See your IBM MFS or IMS
installation manual for further details.

Cursor Feedback F Default. Do not define a field in
the MID as the cursor feedback
field.

T Provide cursor information for
input processing. To hold the
information, APS appends two
halfword binary fields to the screen
record:
screen-CURSOR-ROW and screen-
CURSOR-COL.

Cursor feedback fields do not affect
output cursor positioning.

DIF-DOF Name Override APS-generated name. Default
reflects the number of characters in the
screen name, as follows:

4-character name: screennameDF
5-, 6-character name: screenname$
7-, 8-character name: screenname
truncated to 6 characters

Opr Logical Paging F Default. Do not request operator
logical paging.

T Request paging. Enter name of
field that will contain the paging
requests in the Optional Fld Name
field.

MID Name Override APS-generated name. Default
reflects the number of characters in the
screen name, as follows:

4-character name: screennameMI
5-, 6-, 7-character name: screennameI
8-character name: screennameI; the I
replaces the eighth character
User’s Guide

Setting Parameters for Generation 79

ugpubb.book Page 79 Tuesday, February 19, 2002 9:39 AM
MID Default Values F Default. Do not treat initial values
as default values for fields in the
MFS-generated MID.

T Treat initial values as default
values.

MOD Name Override APS-generated name. Default
reflects the number of characters in the
screen name, as follows:

4-character name: screennameMO
5-, 6-, 7-character name: screennameO
8-character name: screennameO; the O
replaces the eighth character

MOD Fill Char Generate fill characters in the MOD
seqment statement. Valid characters are:
--, NULL, PT, C, or ’x’, where x is any
character value.

DSCA Override the Default System Control
Area default value of X’00A0’.

"Labeled" Screen F Default. Do not append screen
name to the input message.

T Append the screen name.

Lines Per Page If device type is a printer, specify number
of lines to print on a page.

Trancode: Literal Specify any literal value as the trancode.
Default is the screen name.

Optional Fld Name Specify fieldname or MFS PFKEY to hold
the trancode or operator logical paging
command. Alternatively, enter *PF and
assign the PF key value on the MFS
Function Keys screen, or *TC and
construct a trancode on the Trancode
Construction screen.

MID Segment Exit:

Number

Vector

Generate the EXIT parameter on the
MID segment statement with Number as
the exit routine number and Vector as
the exit vector number. Valid values are:

Number: 0 to 127

Vector: 0 to 255

Parameter Description and Values
User’s Guide

80 Chapter 4 Paint Character Screens

ugpubb.book Page 80 Tuesday, February 19, 2002 9:39 AM
7 To save your parameter selections and exit this screen, press PF3. To
exit without saving your selections, enter cancel in the Command
field.

Note: To learn how to generate an entire application, see Generate the
Application.

Importing BMS Mapsets
The BMS Mapset Importer creates a screen member from an existing
BMS screen description and stores it in APSSCRN.

Acces the
importer

To access the BMS Mapset Importer, follow these steps:

1 From the APS Main Menu, select 2, Dictionary Services.

2 Select 1, Importers.

3 Select 4, Screen.

4 Select 1, Import BMS Mapset. The APS Screen Importer panel
appears.

Figure 4-28. BMS Importer Screen
User’s Guide

81

ugpubb.book Page 81 Tuesday, February 19, 2002 9:39 AM
5 Define Processing Logic

This chapter contains the following sections:

• Concepts of Processing Logic

• Predefined Program Functions

• Custom Program Functions

• Mapping Screens to Database Fields

• Control Points

Concepts of Processing Logic
Define processing

logic
You complete your application by defining its processing logic using
Online Express, a menu-driven painter that offers a fill-in-the-blanks
approach. Online Express references the information that you have
specified in the other APS painters and importers, and prompts you to
define the processing logic for those specifications. You do the
following to complete your application in Online Express:

Eight tasks you
can perform with

Online Express

• Select predefined program functions. Online Express provides
predefined program function logic, including teleprocessing and
database read and write functions. You simply select the program
function codes that you want.

• Define custom program functions. You can define your own
program functions to supplement the predefined functions. End
users can execute custom functions just as they execute any
predefined function.

• Specify methods for executing functions. You specify the method
by which the end user executes the functions. For example, the end
user can either enter a code in a function field or press a key.

• Map screen fields to database fields. Online Express automatically
displays all screen fields that you have defined in the APS Screen
User’s Guide

82 Chapter 5 Define Processing Logic

ugpubb.book Page 82 Tuesday, February 19, 2002 9:39 AM
Painter, so that you can map them to the appropriate fields in your
database.

• Define database access. For each database function that you select,
you define one or more database calls that specify which record or
records to read, and which database actions to perform on them,
such as obtain, modify, store, and erase. This task is described in
Define Database Access.

• Customize the predefined functions. You can modify and
supplement the default processing logic of the predefined functions
as follows:

• Add your own logic at predefined locations in your program,
called control points. This task is described in both this chapter
and in Define Database Access.

• Override the default error processing of database calls. This task
is described in Define Database Access.

• Define savekey storage. You define savekey storage area(s) to store
record key values during program execution if your program must
do any of the following:

• Update records with the U(pdate), A(dd), and D(elete) program
functions.

• Obtain records sequentially with the N(ext) program function

• Display repeated record blocks that the end user can scroll with
the F(orward) and B(ackward) functions.

• Re-read repeated record blocks so that the end user can update
and delete them with the M(odify) and E(rase) functions

• Define Commarea storage. You use a program Commarea to store
any data that your program passes between programs with the
X(CTL), M(SG-SW), or C(all) functions.

Predefined Program Functions
Online Express provides predefined teleprocessing and database
function logic. You simply select the predefined function codes that you
need.
User’s Guide

Predefined Program Functions 83

ugpubb.book Page 83 Tuesday, February 19, 2002 9:39 AM
Teleprocessing
functions

Teleprocessing (TP) functions transfer screen data and program control
from the current program to another screen or program. The
predefined TP functions include the following:

Database
functions

Database functions read from and write to your application’s database.
The predefined database functions include the following:

Screen design
dictates how you

use functions

The screen design dictates which functions act on which fields. When
you painted your screen, you designed it to display data in one of the
following three formats:

One occurrence of data at a time. For example, your screen might
display the name, address, and other information about a particular

TP Function Description

S(end) Transmits an input/output screen.

M(SG-SW) Schedules a new program and optionally passes a
screen record or other data record to it.

X(CTL) Transfers control to another program.

C(all) Calls a subroutine or performs a CICS LINK.

C(lear) Moves spaces or low-values to all I/O fields.

E(xit) Terminates the program.

Read Function Description

Q(uery) Obtains one or more records and displays data on
the screen.

B(ackward) Pages backward through a repeated record block.

F(orward) Pages forward through a repeated record block.

N(ext) Retrieves the next sequential record and displays
data; not applicable to SQL.

R(efresh) Re-reads the database when the end user executes
any database write function on one or more
repeated record block rows, and re-displays the
record block to reflect the database updates.

Write Function Description

A(dd) Stores records.

D(elete) Erases records.

U(pdate) Modifies records.
User’s Guide

84 Chapter 5 Define Processing Logic

ugpubb.book Page 84 Tuesday, February 19, 2002 9:39 AM
customer, as shown in Screen Displaying One Occurrence of Data. To
query the record in this example, the end user enters q(uery) in the
Function field and a value in the record key field, Customer Number.
The developer has assigned the S(end) function to the PF3 key so that
the end user can press PF3 to display the Main Menu.

Figure 5-1. Screen Displaying One Occurrence of Data

On such a screen, any function that you define for the program acts on
all fields. You can select any of the following functions:

Multiple occurrences of data, displayed in a repeated record block. For
example, your screen might display rows of information about many
items in inventory, as shown in Screen Displaying Multiple Occurrences
of Data. Because this sample program has just one function--query--a
function field is not required. The end user starts the query by entering
a part number in the record key field. The developer has assigned the
F(orward) and B(ackward) functions to the PF8 and PF7 keys so that the
end user can press these keys to scroll through the repeated record
block.

A(dd) D(elete) N(ext) S(end)

C(all) E(xit) Q(uery) U(pdate)

C(lear) M(SG-SW) R(efresh) X(CTL)
User’s Guide

Predefined Program Functions 85

ugpubb.book Page 85 Tuesday, February 19, 2002 9:39 AM
Figure 5-2. Screen Displaying Multiple Occurrences of Data

On such a screen, any function that you define for the program acts on
all fields. You can select the same functions that are available for single
occurrences of data, plus the F(orward) and B(ackward) functions for
scrolling through the repeated block.

Both single and multiple occurrences of data. For example, your screen
might display information about a single customer order and a list of
the parts ordered, as shown in Screen Displaying Single and Multiple
Occurrences of Data.

Figure 5-3. Screen Displaying Single and Multiple Occurrences of Data
User’s Guide

86 Chapter 5 Define Processing Logic

ugpubb.book Page 86 Tuesday, February 19, 2002 9:39 AM
If your screen displays both single and multiple occurrences of data, you
might have to define two function fields:

• A primary function field for updating the single occurrence record

• A row function field, if you must update the repeated record block
rows

Use the primary and row function fields to act upon data as follows:

Screen Displaying Single and Multiple Occurrences of Data illustrates a
screen displaying both single and multiple occurrences of data--
information about a single customer order and a list of the parts
ordered. The end user starts the query by entering q(uery) in the

Primary Function Field Functions Data Acted On

Database read functions:

B(ackward) All repeated record block row data

F(orward) All repeated record block row data

N(ext) All data on the screen

Q(uery) All data on the screen

R(efresh) All data on the screen

Database write functions:

A(dd) Only the single occurrence data

D(elete) Only the single occurrence data

U(pdate) Only the single occurrence data

Teleprocessing functions:

C(all) All data on the screen

C(lear) All data on the screen

E(xit) All data on the screen

M(SG-SW) All data on the screen

S(end) All data on the screen

X(CTL) All data on the screen

A(dd) A row of the repeated record block

D(elete) A row of the repeated record block

U(pdate) A row of the repeated record block
User’s Guide

Predefined Program Functions 87

ugpubb.book Page 87 Tuesday, February 19, 2002 9:39 AM
primary function field and a value in the record key field, Order No.
Data displays in all fields. To update, add to, and delete from:

• The customer order information, the end user enters function codes
in the primary function field, Enter Function

• The parts records in the repeated block, the end user enters
function codes in the row function field, Act.

The developer has assigned the F(orward) and B(ackward) functions to
the PF8 and PF7 keys so that the end user can scroll through the
repeated block.

Other processing
for multiple

occurrences of
data

You might want to process multiple occurrences of data for purposes
other than displaying it in an updateable repeated record block. For
example, you might want to:

• Query a single record that has multiple values, such as 12 monthly
sub-totals, and insert logic at a control point to move the data to a
non-updateable repeated record block.

• Loop on multiple records and display the data in a non-updateable
repeated record block.

• Loop on a record and insert logic at a control point to calculate
record totals, and display just the totals in one occurrence of data.

Specifying Predefined Program
Functions
To specify predefined program functions, follow these steps:

1 Ensure that you have done the following:

• Listed the components of your application on the Application
Painter screen.

• Painted your program screens using the APS Screen Painter.

• Generated your program subschema(s) using the APS Database
Importers.

2 Display the Application Painter screen.
User’s Guide

88 Chapter 5 Define Processing Logic

ugpubb.book Page 88 Tuesday, February 19, 2002 9:39 AM
Access Online
Express

3 To start defining program functions for your first program, display
the Online Express menu by entering ox in the selection field next to
the program name.

Figure 5-4. Online Express Menu

4 Display the Program Definition screen by selecting Actions Program
Definition, or entering option 1 in the Command field.

Figure 5-5. Program Definition Screen

Specify functions
and function

field(s)

5 Specify any of the following:

• All database read and write functions that you want to include
in your program

• A primary function field, if you want the end user to execute the
functions by entering codes in a function field
User’s Guide

Predefined Program Functions 89

ugpubb.book Page 89 Tuesday, February 19, 2002 9:39 AM
• A row function field, if you want the end user to execute
database write functions for repeated record block rows by
entering function codes in a function field

• The C(lear) and E(xit) teleprocessing functions; you define the
other teleprocessing functions--S(end), X(CTL), M(SG-SW), and
C(all)--in step 7

• A field for displaying system messages

• The initial cursor position

To specify the functions and fields above, complete the Program
Definition screen fields as follows:

Field Value

Function Field The COBOL name of the primary function
field where the end user enters function
codes to execute program functions.

This field is optional if you define just the
q(uery) or a(dd) function.

If you named this field FUNCTION or
FUNCTION-name when you painted your
screen, Online Express automatically displays
the function field name.

Function Codes Valid values:

• Database read functions:

• Q(uery)

• N(ext); not applicable for SQL

• F(orward) and B(ackward);
applicable only for repeated record
blocks

• R(efresh)

• Database write functions:

• U(pdate)

• A(dd)

• D(elete)
User’s Guide

90 Chapter 5 Define Processing Logic

ugpubb.book Page 90 Tuesday, February 19, 2002 9:39 AM
6 Press PF3 to return to the Online Express Menu.

Specify other
teleprocessing

functions

7 To specify the S(end), X(CTL), M(SG-SW), or C(all) teleprocessing
functions, select Actions Alternate Functions, or enter option 2 in
the Command field. The Alternate Functions screen displays,

• Teleprocessing functions:

• C(lear). Moves spaces to all I/O fields.

• E(xit)

Note: You can rename these default
function codes with your own codes later in
this procedure.

Row Function Field The COBOL name of the function field
where the end user enters database write
functions that act only on repeated record
block rows.

Row Function Codes Valid values:

• U(pdate)

• A(dd)

• D(elete)

SYSMSG Field The COBOL name of the system message
field. If you named this field SYSMSG when
you painted your screen, Online Express
automatically displays this name.

Position Cursor on
Field

By default Online Express positions the
cursor on the function field for the non-
repeated record block data.

If you want to override this default with a
different field, do one of the following:

• To use the initial cursor position field
that you specified in the Screen Painter
Field Attributes screen, blank out this
field with spaces.

• Or, specify the override field in this field.

Field Value
User’s Guide

Predefined Program Functions 91

ugpubb.book Page 91 Tuesday, February 19, 2002 9:39 AM
showing all function codes that you selected on the Program
Definition screen, as illustrated in Program Definition Screen.

Figure 5-6. Alternate Functions Screen

8 Complete the screen fields as follows:

• Enter in the Function field any of the predefined teleprocessing
function codes that you need--S(end), X(CTL), M(SG-SW), or
C(all).

• Enter the objects of the functions - such as the screen to send or
the program to transfer to -in the Reserved Function or Function
Name field.

• Enter in the Program Input field the function code value that
you want the end user to use to execute the function. The value
can be 1-8 alphabetic characters.

Notes:

• To rename any default Program Input code with your own
alternative alias code, see step 10.

• You use the P(erform), G(lobal code), L(ocal code), and $
(invoke macro) codes to define custom functions. See
Defining Custom Program Functions.

User’s Guide

92 Chapter 5 Define Processing Logic

ugpubb.book Page 92 Tuesday, February 19, 2002 9:39 AM
Specify how the
end user executes

the functions

9 Specify how you want the end user to execute the functions by
choosing one of the following:

• Default. The end user enters a function code in your screen’s
function field(s). The codes are those that you specified on the
Program Definition and Alternate Functions screens.

• To rename the default codes with your own codes, perform
step 10.

• If you accept this execution method and the default codes,
skip to step 17.

Note: The Enter key is the default function processing key. It causes your
program to test the function code that the end user enters, and execute
the function. To override the Enter key as the default function
processing key, perform step 15.

• The end user presses a function key, such as PF3. To assign one or

more functions to a function key, perform step 12.

• The end user presses a special key, such as a PA key. To assign
one or more functions to a special key, perform step 14.

Note: You can specify any combination of execution methods. For
example, you can assign the E(xit) function to the F3 key, and other
functions to function codes.

Rename the

default function
codes with alias

codes

10 To rename any default function code with your own alternative, or
alias, function code, go to a new line on the Alternate Functions
screen and enter the following values in the following fields:

11 Press PF3 to return to the Online Express Menu.

Assign functions
to function keys

12 To assign any function to a function key, select option 3, PF Key
Functions. The PF Key Functions screen displays, and lets you assign

Program Input Function Reserved Function or Function
Name

The new code, up to
eight characters

A(lias) The function whose code you
are renaming, such as *Query
or s
User’s Guide

Predefined Program Functions 93

ugpubb.book Page 93 Tuesday, February 19, 2002 9:39 AM
functions to all 24 function keys. Initially, only the first 12 keys
appear on the screen; to assign functions to function keys 13
through 24, select Actions List Next 12 PF Keys, or press Enter.

Note: If you defined trancodes for your MFS mapsets, do not assign
functions to function keys.

Figure 5-7. PF Key Functions Screen

13 Press PF3 to return to the Online Express Menu.

Assign functions
to CICS special

keys

14 To assign functions to the Clear key and PA keys for a CICS
application, select Actions, Special PF Keys, or enter spc in the
Command field of the PF Key Functions screen to display the Special
Key Definition screen. Complete the screen fields as follows:

a Enter the teleprocessing function codes that you need in the
Function field next to a key.

b Enter the objects of the functions, such as the screen to send or
the program to transfer to, in the Reserved Function or Function
Name field.
User’s Guide

94 Chapter 5 Define Processing Logic

ugpubb.book Page 94 Tuesday, February 19, 2002 9:39 AM
Figure 5-8. Special Key Definition Screen

Change the
default processing

key

15 To override the Enter key as the default function processing key,
enter the overriding key name, such as clear or pf10, in the Default
Processing Key field on the Special Key Definition screen. The
processing key causes your program to test the function code that
the end user has entered, and execute the function.

16 Press PF3 to return to the Online Express Menu.

Special Considerations

Clearing screens
with low-values

By default, the C(lear) function clears all I/O screen fields with spaces.
Alternatively, you can clear repeated block row fields with low-values.
To do so, display the Express Parms screen by entering p in the
Command field of any Online Express screen, and change value of the
Clear With Low-Values parameter to Yes.

Custom Program Functions
Tailor your
programs

Without leaving Online Express, you can write custom program
functions to supplement the predefined functions provided by Online
Express. End users can execute custom functions just as they execute any
predefined function.
User’s Guide

Custom Program Functions 95

ugpubb.book Page 95 Tuesday, February 19, 2002 9:39 AM
Write local or
global custom
function logic

You can write functions specifically for one program, or for use
throughout your application. A program-specific custom function is
known as a local program stub; a custom function that you use
throughout your application is known as a global program stub.
Alternatively, you can write a function in a macro and invoke the macro
in any program of any application. Stubs and macros are more fully
described below:

Defining Custom Program Functions
To define custom program functions for applications, follow these steps:

Select the
function

execution method

1 Depending on how you want the end user to execute the function,
decide which Online Express screen to use, as listed below:

Custom Function
Component Description

Local stub Procedure Division and Data Division source that you
write and execute specifically in one program. You
write a local stub using the Specification Painter,
which you access from the Alternate Functions, PF
Key Definitions, or Special Key Definitions screen. A
local stub can consist of a main paragraph, other
paragraphs that the main paragraph performs, and
Data Division source code for the paragraphs.

Global stub Procedure Division source that you can execute in
any program of an application. You write a global
stub using the Program Painter, which you access
from the Application Painter. A global stub can
consist of one or more paragraphs.

Macro Any Customization Facility source that you can
execute in any program of any application. You
write a macro in the USERMACS data set in your user
Project and Group.

Execution Method Online Express Screen

Entering a function execution code Alternate Functions

Pressing a function key PF Key Functions

Pressing the Clear key or a PA key Special Key Definitions
User’s Guide

96 Chapter 5 Define Processing Logic

ugpubb.book Page 96 Tuesday, February 19, 2002 9:39 AM
Determine
whether to write

a stub or macro

2 Determine whether you want to write your function in a local stub,
global stub, or macro. You can define any one of them to your
program using any of the above screens.

• To define a local stub, perform step 3.

• To define a global stub, perform step 4.

• To define a macro, perform step 5.

Define local stubs 3 To define your custom function in a local stub, follow these steps:

• Depending on how you want the end user to execute the
function, display either the Alternate Functions, PF Key
Functions, or Special Key Definition screen and complete it as
follows:

Alternate
Functions

Complete the screen as follows:

• Enter a unique function execution
code of up to eight characters in the
Program Input field.

• Leave the Reserved Function or
Function Name field blank.

• Enter e(dit local code) in the Function
field. The Specification Painter screen
displays, where you write the stub
source code.

PF Key Functions Complete this screen as follows:

• Leave the Reserved Function or
Function Name field blank.

• Enter e(dit local code) in the Function
field next to any function key listed
on the screen. The Specification
Painter screen displays, where you
write the stub source code.
User’s Guide

Custom Program Functions 97

ugpubb.book Page 97 Tuesday, February 19, 2002 9:39 AM
• Write the local stub as follows:

• To define the main paragraph, enter your COBOL, COBOL/2,
or S-COBOL statements starting in column 12 and continue
onto as many lines as you need. Do not enter a paragraph
name; APS automatically generates one and displays it at the
top of the Specification Painter screen. In the main
paragraph, you can perform additional paragraphs that you
write in the local stub. For information on writing S-COBOL
statements, see the "S-COBOL Structures" topic in the APS
Reference .

• To define an additional paragraph that the main paragraph
performs, enter the APS keyword, PARA, in the KYWD
column (columns 8-11) and the paragraph name starting in
column 12 on the same line. On the following lines, enter
your paragraph statements.

• After all paragraphs, define any Data Division source for the
paragraphs, such as data items that the paragraphs
reference. To do so, use APS Data Division keywords. For
information, see the "Keywords for Program and
Specification Painters" topic in the APS Reference .

For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*--
 statement
 .
 .
 .
 perform sub-para-name

 para sub-para-name
 statement
 .
 .

Special Key
Definition

Complete this screen as follows:

• Leave the Reserved Function or
Function Name field blank.

• Enter e(dit local code) in the Option
field next to any key listed on the
screen. The Specification Painter
screen displays, where you write the
stub source code.
User’s Guide

98 Chapter 5 Define Processing Logic

ugpubb.book Page 98 Tuesday, February 19, 2002 9:39 AM
 .
 ws
 01 group-level-data-item
 05 elementary-data-item
 .
 .
 .

• When you finish writing the local stub, press PF3 to save it and
return to the previous screen. Note that Online Express displays
the value L(ocal code) in the Function field. To edit the stub,
simply enter e(dit local code) in the Function field.

Define global
stubs

4 To define your custom function in a global stub, follow these steps:

• List the global stub name in your application definition. To do
so, display the Application Painter screen and enter the
following on a separate row anywhere in the definition:

• In the Programs field, enter the stub name. The name can
have a maximum of eight characters. The first character must
be alphabetic; others can be alphanumeric or the special
characters @, $, or #.

• In the Screens field, enter the value *stub in the Screens field,
to indicate that the stub has no associated screen.

• Write the global stub using the Program Painter as follows:

• To display the Program Painter, enter s next to the stub name
on the Application Painter.

• To define a paragraph, enter the PARA keyword in the
KYWD column and your paragraph name in column 12 on
the same line. On the following lines, enter your COBOL,
COBOL/2, or S-COBOL paragraph statements. Do not use any
other APS keywords in the paragraph. For information on
writing S-COBOL statements, see the "S-COBOL Structures"
topic in the APS Reference.

For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*--
 para para-1-name
 statement
 .
 .
 .
User’s Guide

Custom Program Functions 99

ugpubb.book Page 99 Tuesday, February 19, 2002 9:39 AM
 para para-2-name
 statement
 .
 .
 .

• Press PF3 to save your global stub and return to the Application
Painter.

• Depending on how you want the end user to execute the
function, display either the Alternate Functions, PF Key
Functions, or Special Key Definition screen and complete it as
follows:

Define macros 5 To define your custom function in a macro, follow these steps:

• Write your macro in the USERMACS data set in your user Project
and Group. See the Customization Facility User’s Guide for rules
on writing macros.

Alternate
Functions

Complete this screen as follows:

• Enter a unique function execution
code of up to eight characters in the
Program Input field.

• Enter g (for global stub) in the
Function field.

• Enter the stub name in the Reserved
Function or Function Name field.

PF Key Functions Complete this screen as follows:

• Enter g (for global stub) in the
Function field next to any function
key listed on the screen.

• Enter the stub name in the Reserved
Function or Function Name field.

Special Key
Definition

Complete this screen as follows:

• Enter g (for global stub) in the Option
field next to any key listed on the
screen.

• Enter the stub name in the Reserved
Function or Function Name field.
User’s Guide

100 Chapter 5 Define Processing Logic

ugpubb.book Page 100 Tuesday, February 19, 2002 9:39 AM
• List the macro name in your application definition. To do so,
display the Application Painter screen and enter the following
on any line above your application’s program names:

• In the USERMACS field, enter the name of the USERMACS file
that contains the macro. The name can have a maximum of
eight characters. The first character must be alphabetic;
others can be alphanumeric.

• In the Loc(ation) field, specify the program location where
you plan to invoke the macro. For valid location values, see
Paint the Application Definition.

• Depending on how you want the end user to execute the
function, display either the Alternate Functions, PF Key
Functions, or Special Key Definition screen and complete it as
follows:

Alternate
Functions

Complete this screen as follows:

• Enter a unique function execution
code of up to eight characters in the
Program Input field.

• Enter the macro invocation symbol $
in the Function field.

• Enter the macro name in the Reserved
Function or Function Name field.

PF Key Functions Complete this screen as follows:

• Enter the macro invocation symbol $
in the Function field next to any key.

• Enter the macro name in the Reserved
Function or Function Name field.

Special Key
Definition

Complete this screen as follows:

• Enter the macro invocation symbol $
in the Option field next to any key.

• Enter the macro name in the Reserved
Function or Function Name field.
User’s Guide

Mapping Screens to Database Fields 101

ugpubb.book Page 101 Tuesday, February 19, 2002 9:39 AM
Mapping Screens to Database Fields
You must map your screen or screen fields to the appropriate fields in
your database. To help you do so quickly, Online Express displays all
fields that you defined when you painted your screen or screen. You
simply specify each screen field’s corresponding database field, and
indicate whether the screen field is an input field, an output field, or
both.

To map screen fields to your database fields, follow these steps:

1 Ensure that you have done the following:

• Listed the components of your application on the Application
Painter screen.

• Painted your screens using the APS Screen Painter.

• Imported your program subschema(s) using the APS Database
Importers.

Display the Field
Mapping screen

2 Select option 4, Field Mapping, from the Online Express Menu to
display the Field Mapping screen. The screen displays all screen
fields that you defined in the Screen Painter. Note that APS prefixes
all field names with their associated screen name.

Figure 5-9. Field Mapping Screen
User’s Guide

102 Chapter 5 Define Processing Logic

ugpubb.book Page 102 Tuesday, February 19, 2002 9:39 AM
Specify whether
fields are

input/output

3 Specify whether the screen fields are input, output, or input/output
fields by entering i(nput), o(utput), or b(oth) next to each field in
the I/O/B column. Leave this column blank for function fields, system
message fields, and savekey fields, because they do not have
corresponding database fields.

Specify database
field names

4 Enter each screen field’s corresponding database field name in the
Program Field column.

Alternatively, to save yourself some typing, copy all the screen field
names to the Program Field column by entering an asterisk (*) in the
Command field. Online Express copies all screen field names--except
function, system message, and savekey fields--without their prefixes, to
the Program Field column. In addition, Online Express enters the value
b(oth) in the I/O/B column for all copied fields. Then, modify the names
as necessary. To add a prefix to some or all fields simultaneously, use the
prefix command.

Enter any of the following prefix command formats in the Command
field:

Special Considerations
Qualify fields that

belong to
multiple records

• If one of your database fields exists in multiple database records,
you must qualify the field to indicate which record it belongs to. To
do so, insert a line with the i(insert) line command and on the
following line, enter the word of followed by the record name. For
example:

Screen Field I/O/B Program Field
-------------------- - -------------------
CSINFO-ORDER-NO B CO-ORDER-NO
 OF SALES-REC

pre fldprefix Adds fldprefix to fields on all lines

pre fldprefix m n Adds fldprefix to fields from line m through line n

pre fldprefix * n Adds fldprefix to fields from line 1 through line n

pre fldprefix n * Adds fldprefix to fields from line n through the
last line
User’s Guide

Control Points 103

ugpubb.book Page 103 Tuesday, February 19, 2002 9:39 AM
Clear the screen • To clear some or all of the values you entered, enter the reset
command in any of the following formats in the Command field:

Control Points
Use control points

to tailor default
processing logic

Without leaving Online Express, you can write and execute custom
processing logic to supplement or override the default logic that Online
Express generates. You execute custom logic at any of several APS-
provided locations in your program, known as program control points.
Control points let you add logic at such locations in the processing
logic as:

• Upon program invocation

• Before sending a screen

• Before evaluating program functions

• Before and after moving records between the database and the
screen

• Before transferring control to another program

• Before terminating the program normally or abnormally

• Other locations, depending on which functions you define for your
program

Control points for
database calls

In addition, you can add processing logic before and after database
calls. For information, seeCustom Logic at Database Call Control Points.

Write local or
global custom

processing logic

You can write local custom logic specifically for one or more control
points in a program, or global custom logic for use throughout your
application. You execute any local or global logic at any control point.

reset Clears values on all lines

reset m n Clears values from line m through line n

reset * n Clears values from line 1 through line n

reset n * Clears values from line n through the last line
User’s Guide

104 Chapter 5 Define Processing Logic

ugpubb.book Page 104 Tuesday, February 19, 2002 9:39 AM
You write local and global logic in any of the following components in
your program or application:

View contol
points on the

Control Points
screen

The set of control points that might appear in your program is shown
below. Because programs vary, you will see a different subset of control
points from program to program, depending on which functions you
define for them. To view the control points in your program, you display
the Control Points screen. In addition, you can look in your generated
program source to see where the control points occur; APS generates
comments that identify them that you can activate or deactivate. To
activate these comments, set the value of the Control Points Comments
field to yes on the Express Parms screen. To access the Express Parms
screen, enter p in the Command field on the Online Express Menu. The
complete set of control points is as follows:

Custom Logic
Component Description

Local stub Procedure Division and Data Division source that you
write and execute specifically in one program. You
write a local stub using the Specification Painter, which
you access from the Control Points screen. A local stub
can consist of a main paragraph, other paragraphs that
the main paragraph performs, and Data Division
source code for the paragraphs.

Global stub Procedure Division source that you can execute in any
program of an application. You write a global stub
using the Program Painter, which you access from the
Application Painter. A global stub can consist of one or
more paragraphs.

Paragraph A Procedure Division paragraph and Data Division
source that you write specifically for one program and
execute at one or more control points. You write a
paragraph in the Specification Painter, which you
access from the Control Points screen.

Macro Customization Facility source that you can execute in
any program of any application. You write a macro in
the USERMACS data set in your user Project and
Group.

Control Point Location in Program

After-Receive-Para After entering a program, regardless of
invocation mode.
User’s Guide

Control Points 105

ugpubb.book Page 105 Tuesday, February 19, 2002 9:39 AM
Post-Screen-Read After a screen-invoked program receives its
screen.

Transid-Invoked-Para After a transid-invoked program is invoked.

Program-Invoked-Para When APS displays the screen of a program
invoked by the XCTL or MSG-SW function.

Pre-Term Before APS terminates the program.

After-Enter-Check After the end user presses the processing key
(the Enter key is the default), and before the
PRE-FUNCTION-TEST paragraph executes.

Pre-Function-Test Before APS evaluates all functions except the
Terminate, or Exit, function.

Pre-Branch Before each MSG-SW, XCTL, or Call function
executes.

Ed-Error-Pre-Send Before APS send a screen whose field edits
have failed.

General-Pre-Send After APS checks all functions, and before the
TP-SEND call executes, when invocation mode
is screen-invoked.

Before-Send-Para Before APS sends the screen, regardless of
invocation mode.

Pre-Screen-To-Rec Before APS performs the MOVE-SCREEN-TO-
REC paragraph.

Post-Screen-To-Rec After APS performs the MOVE-SCREEN-TO-
REC paragraph, and the Update or Add
function executes.

Pre-Rec-To-Screen Before APS performs the MOVE-REC-TO-
SCREEN paragraph.

Post-Rec-To-Screen After APS performs the MOVE-REC-TO-
SCREEN paragraph, and after the Query
function executes.

Pre-RB1-Row-To-Rec Before the Add or Update function executes
for a repeated record block row, and before
screen fields move to database fields. APS
uses the subscript CTR to reference repeated
block rows.

Control Point Location in Program
User’s Guide

106 Chapter 5 Define Processing Logic

ugpubb.book Page 106 Tuesday, February 19, 2002 9:39 AM
Inserting Logic at Control Points
To insert your custom logic at control points, follow these steps:

1 From the Online Express menu, display the Control Points screen by
selecting option 5, Control Points.

Post-RB1-Row-To-Rec Before the Add or Update function executes
for a repeated record block row, and after
screen fields move to database fields. APS
uses the subscript CTR to reference repeated
block rows.

Pre-Rec-To-RB1-Row After the Query or Forward function executes
for a repeated record block row, and before
database fields move to screen fields. APS
uses the subscript CTR to reference repeated
block rows.

Post-Rec-To-RB1-Row After the Query or Forward function executes
for a repeated record block row, and after
database fields move to screen fields. APS
uses the subscipt CTR to reference repeated
block rows.

Error-Send-And-Quit When a program terminates abnormally, such
as when a database call fails when the
Database Call Tailoring screen’s Abort On
Error parameter is set to y.

Misc-User-Paragraphs A location where you can write and store any
number of paragraphs that you can perform
at any control point in your program. Write
all your paragraphs in one file in this
location.

Control Point Location in Program
User’s Guide

Control Points 107

ugpubb.book Page 107 Tuesday, February 19, 2002 9:39 AM
Figure 5-10. Control Points Screen

Decide how to
implement the

control point

2 Determine whether you want to write your custom logic in a local
stub, global stub, macro, or paragraph:

• To define a local stub, perform step 3.

• To define a global stub, perform step 4.

• To define a macro, perform step 5.

• To define a paragraph, perform step 6.

Define local stubs 3 To define your control point logic in a local stub, enter e(dit local
code) in the Action field next to the control point where you want
to execute the stub. The Specification Painter displays, where you
write the stub as follows:

a To define the main paragraph, enter your COBOL, COBOL/2, or
S-COBOL statements starting in column 12 and continue onto as
many lines as you need. Do not enter a paragraph name; APS
automatically generates one and displays it at the top of the
Specification Painter screen. In the main paragraph, you can
perform additional paragraphs that you write in the local stub.
For information on writing S-COBOL statements, see the "S-
COBOL Structures" topic in the APS Reference.

• To define an additional paragraph that the main paragraph
performs, enter the APS keyword, PARA, in the KYWD
column (columns 8-11) and the paragraph name starting in
User’s Guide

108 Chapter 5 Define Processing Logic

ugpubb.book Page 108 Tuesday, February 19, 2002 9:39 AM
column 12 on the same line. On the following lines, enter
your paragraph statements.

• After all paragraphs, you can define Data Division source for
the paragraphs, such as data items that the paragraphs
reference. To do so, use APS Data Division keywords. For
information, see the "Keywords for Program and
Specification Painters" topic in the APS Reference.

For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*--
 statement
 .
 .
 .
 perform sub-para-name

 para sub-para-name
 statement
 .
 .
 .
 ws
 01 group-level-data-item
 05 elementary-data-item
 .
 .
 .

b When you finish writing the local stub, press PF3 to save it and
return to the previous screen. Note that Online Express displays
the value L(ocal code) in the Function field. To edit the stub,
simply enter e(dit local code) in the Function field.

Define global
stubs

4 To define your control point logic in a global stub, follow these
steps:

a List the global stub name in your application definition. To do
so, display the Application Painter screen and enter the
following on any line above your application’s program names:

• In the Programs field, enter the stub name. The name can
have a maximum of eight characters. The first character must
be alphabetic; others can be alphanumeric or the special
characters @, $, or #.
User’s Guide

Control Points 109

ugpubb.book Page 109 Tuesday, February 19, 2002 9:39 AM
• In the Screens field, enter the value *stub in the Screens field,
to indicate that the stub has no associated screen.

b Write the global stub using the Program Painter as follows:

• To display the Program Painter, enter s next to the stub name
on the Application Painter screen.

• To define a paragraph, enter the PARA keyword in the
KYWD column and your paragraph name in column 12 on
the same line. On the following lines, enter your COBOL,
COBOL/2, or S-COBOL paragraph statements starting in
columns 12. Do not use any other APS keywords in the
paragraph. For information on writing S-COBOL statements,
see the "S-COBOL Structures" topic in the APS Reference.

For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*--
 para para-1-name
 statement
 .
 .
 .
 para para-2-name
 statement
 .
 .
 .

c Press PF3 to save your global stub and return to the Application
Painter.

d Execute the stub at any control point by entering g(lobal code)
in the Action field next to the control point, and the stub name
in the Exit Name field.

Define macros 5 To define your control point logic in a macro, follow these steps:

a Write your macro in the USERMACS data set in your user Project
and Group. See the Customization Facility User’s Guide for rules
on writing macros.
User’s Guide

110 Chapter 5 Define Processing Logic

ugpubb.book Page 110 Tuesday, February 19, 2002 9:39 AM
b List the macro name in your application definition. To do so,
display the Application Painter screen and enter the following
on any line above your application’s program names:

• In the USERMACS field, enter the name of the USERMACS file
that contains the macro. The name can have a maximum of
eight characters. The first character must be alphabetic;
others can be alphanumeric.

• In the Loc(ation) field, specify the program location where
you plan to invoke the macro. For valid location values, see
Paint the Application Definition.

c Invoke the macro at any control point by entering the macro
invocation symbol $ in the Action field next to the control point,
and the macro file name in the Exit Name field.

Define
paragraphs

6 To define your control point logic in one or more paragraphs, follow
these steps:

a Write the control point paragraph(s) using the Specification
Painter. To do so, enter e (for edit) next to the Misc-User-
Paragraphs control point on the Control Points screen and write
the paragraphs according to the following rules:

• For each paragraph, enter the PARA keyword in the KYWD
column and your paragraph name in column 12 on the same
line. On the following lines, enter your COBOL, COBOL/2, or
S-COBOL paragraph statements starting in column 12. Do not
use any other APS keywords in the paragraph. For
information on writing S-COBOL statements, see the "S-
COBOL Structures" topic in the APS Reference.

• After all paragraphs, you can define Data Division source for
the paragraphs, such as data items that the paragraphs
reference. To do so, use APS Data Division keywords. For
information, see the "Keywords for Program and
Specification Painters" topic in the APS Reference.

For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*--
 para para-name
 statement
 .
 .
 .
User’s Guide

Control Points 111

ugpubb.book Page 111 Tuesday, February 19, 2002 9:39 AM
 perform sub-para-name

 para sub-para-name
 statement
 .
 .
 .
 ws
 01 group-level-data-item
 05 elementary-data-item
 .
 .
 .

b When you finish writing the paragraph(s), press PF3 to save it
and return to the previous screen. Note that Online Express
displays the value L(ocal code) in the Action column. To edit the
paragraphs, simply enter e(dit local code) in the Action column.

c Perform the paragraph at any control point by entering p in the
Action column next to the control point, and the paragraph
name in the Exit Name column. To pass arguments to the
paragraph, code them next to the paragraph name without
parentheses. For example:

paraname arg1 arg2 arg3

For more information, see the "TP-PERFORM" topic in the APS
Reference.
User’s Guide

112 Chapter 5 Define Processing Logic

ugpubb.book Page 112 Tuesday, February 19, 2002 9:39 AM
User’s Guide

113

ugpubb.book Page 113 Tuesday, February 19, 2002 9:39 AM
6 Define Database Access

This chapter contains the following sections:

• Concepts of APS Database Access

• Defining SQL Database Calls

• Defining IMS Database Calls

• Defining VSAM Database Calls

• Defining IDMS Database Calls

• Customized Database Calls

• Savekey and Commarea Storage

Concepts of APS Database Access
Database

functions and
actions

An Online Express database call defines which record or records to
read, and which database actions to perform on them. Each database
function that you specify in your program definition has a
corresponding database action that defines the function, as shown
below:

For example, if your program must query, update, add, and delete a
record, you must define a call to obtain, modify, store, and erase that
record. To do so, you simply enter the action codes o(btain), m(odify),
s(tore), and e(rase) next to the record that Online Express displays.

Database
Function Corresponding Database Action

Query Obtain

Update Modify

Add Store

Delete Erase
User’s Guide

114 Chapter 6 Define Database Access

ugpubb.book Page 114 Tuesday, February 19, 2002 9:39 AM
Looping on
records

You can obtain multiple occurrences of a record simultaneously by
looping on the record with the l(oop) action code. For example, you
might want to loop on a record to display multiple data items in a
repeated record block, list box, or combination box on your screen.
Alternatively, you might want to loop on a record to calculate field
totals, and display just the calculation results. You can map to your
program screen any fields of any records that you loop. You specify
which fields to map, using the Field Mapping screen.

By default, Online Express considers any call or calls that follow a loop
call to be nested within the loop. That is, these calls execute each time
that the loop executes. To indicate that a call is nested within a loop,
Online Express assigns a nesting level value to the nested call. You can,
however, decrease the nesting level of any call to execute it
independently of the loop.

Define inner, or
nested, loops

When you define multiple loops in your program, Online Express
considers the first loop to be an outer loop, and each subsequent loop
to be an inner loop, nested within the previous loop. By default, loops
are progressively nested--that is, the second loop is nested within the
first, and the third loop is nested within the second. As with any nested
call, you can decrease the nesting level of a nested loop to execute it
independently of a loop, or nest it within a different loop.

Define database
calls

Define a database call by completing a few Online Express screens that
prompt you to do the following:

• Select which record or records to access.

• Specify the database read and write actions that you want to
perform on the record.

• Qualify the data that you access by specifying field or column
criteria.

Online Express displays a list of all records of the program subschema or
PSB. From that list, you select a record and specify its read and write
actions. For example, to define a call for a record that you want end
users to modify and store, simply specify the obtain, modify, and store
action codes next to that record in the list.

How you use the action codes in Online Express depends on the
structure and methods inherent to your database target. For example,
you can obtain data from multiple IMS records in a path and specify
that end users can modify and store it. Or you can select multiple SQL
User’s Guide

Concepts of APS Database Access 115

ugpubb.book Page 115 Tuesday, February 19, 2002 9:39 AM
tables and loop on them, returning multiple row records that can be
modified, stored, and erased.

Online Express then displays all fields or columns of the record or
records that you select for the call. You specify any field or column
criteria to qualify the data that the call returns. Online Express prompts
you for information appropriate to your selected database target.

Qualify Online Express database calls using methods available to your
database target, as shown below:

Database Qualification Method

IMS Qualify on any field, including:

• Key field

• Non-unique search field

• Sequence field

Qualify on multiple fields and conditions using Boolean
operators

SQL Qualify on any column

Qualify on multiple columns and conditions using
Boolean operators

Qualify on multiple columns of multiple tables, using
Union and Join calls

Qualify with Subselect specifications, including SQL
column and scalar functions, and Exists, Group By, and
Having clauses

VSAM Qualify on any field, including:

• Primary index

• Partial key field

IDMS Qualify on any field, including:

• Address

• CALC key

• Key

• Non-unique search

• Sequence
User’s Guide

116 Chapter 6 Define Database Access

ugpubb.book Page 116 Tuesday, February 19, 2002 9:39 AM
You should define the calls in the order in which you want to execute
them, but you can rearrange the order and modify any call definition at
any time.

Execution
methods for

database calls

Typically, you define calls that execute when the end user enters a
function code, presses a key. For example, you might want the obtain
action to execute when the end user enters Q, presses F5, or presses the
Enter key.

In addition, you can define calls that execute as a custom program
function. For example, you can automatically execute a call at various
locations in your program, known as control points. Online Express
provides many control points at which you can execute calls.

Error processing Online Express generates status flags that you can use to determine
execution errors. Each flag has a default status code, as shown below:

Customize
database call

processing

While Online Express lets you completely define database calls without
having to code them, you can also extend and customize those calls to
suit your needs. Without leaving Online Express, you can write and
execute custom database call processing logic to supplement or override
the default logic that Online Express generates. You execute custom
logic at any of several APS-provided locations in your program, known
as database call control points. The control points let you add
processing logic before and after a database call, and when calls
execute normally or abnormally.

If you want to override APS error processing routines, you change a
status flag’s status code from Error to Exception, and then write your
own error routines at control points. You can also override the default
error messages with your own messages.

Define a
Commarea

You can define an area in your program to store any data that your
program passes between programs, called a Commarea. You must
define a Commarea if your program passes data with the X(CTL), M(SG-

Status Flag Default Status Code

OK-ON-REC N(ormal)

END-ON-REC N(ormal)

NTF-ON-REC E(rror)

DUP-ON-REC E(rror)

VIO-ON-REC E(rror)
User’s Guide

Concepts of APS Database Access 117

ugpubb.book Page 117 Tuesday, February 19, 2002 9:39 AM
SW), or C(all) functions. You do so simply by specifying its size to Online
Express.

Define a savekey
storage area

You can also define an area in your program to store record key values
during program execution, called savekey storage. You must define
savekey storage if you program must do any of the following:

• Update records with the U(pdate), A(dd), and D(elete) program
functions.

• Obtain records sequentially with the N(ext) program function.

• Display repeated record blocks that the end user can scroll with the
F(orward) and B(ackward) functions.

• Re-read repeated record blocks so that the end user can update and
delete them with the M(odify) and E(rase) functions.

You can store savekey data either in savekey screen fields that you
define in your screen definition, or in the program Commarea.

Sample database
calls

The Database Access Summary screen provides access to all the screens
that you need to define a call, and displays a summary list of all calls
that you define for a program. Sample Database Access Summary
Screen illustrates four sample SQL database calls.

Figure 6-1. Sample Database Access Summary Screen
User’s Guide

118 Chapter 6 Define Database Access

ugpubb.book Page 118 Tuesday, February 19, 2002 9:39 AM
Note the following about the calls defined above:

• Call 01 obtains a customer order table record qualified on key field
criteria, as indicated by the Qualifier field value KEYQUAL. The
qualification is satisfied when the end user enters a screen field
value that matches that criteria. The end user can query, update,
delete from, and add to the table, as indicated by the o(btain),
m(odify), e(rase), and s(tore) action codes in the Action field.

• Call 02 obtains a customer information table record qualified on a
field in the customer order table.

• Call 03 loops on the detail table of the customer order table,
qualified on the customer order table key field. The end user can
also update, delete from, and add to the table, as indicated by the
m(odify), e(rase), and s(tore) action codes in the Action field. The
records returned by the loop are mapped to a repeated block on the
program screen, as indicated by the value 1 in the Blk (Block) field.

• Call 04 obtains a part master table record qualified by a field in the
detail table. Because call 04 follows a loop, Online Express assumes
that the call is nested within the loop, as indicated by its Nesting
field value - 1.

Defining SQL Database Calls
You can define SQL database calls to obtain, loop, modify, erase, and
store columns from one or more tables. Specifically, you can define the
following types of SQL calls:

Types of SQL calls • Basic SQL calls, to access qualified columns of one table.

• Join calls and Union calls, to access qualified columns of multiple
tables.

Types of call
qualifiers

Online Express lets you specify any of the following SQL call qualifiers:

• Select and Subselect statements

• Boolean qualifiers

• SQL column and scalar functions

• Exists and Not Exists clauses
User’s Guide

Defining SQL Database Calls 119

ugpubb.book Page 119 Tuesday, February 19, 2002 9:39 AM
• Group By and Having clauses

Procedures for defining basic calls, Join calls, and Union calls follow, in
separate sections.

Defining Basic SQL Calls
Follow these steps to define a basic, qualified SQL database call.
Procedures for defining Join and Union calls appear in separate topics,
later in this section.

Select the
Database Access
Summary screen

1 Select option 6, Database Access, from the Online Express menu.
Alternatively, enter 6 or dba on any primary Online Express screen.
The Database Access Summary screen displays.

Figure 6-2. Database Access Summary Screen

Define the first
call

2 To define the first call, enter s in the selection field next to call
number 01. The Database Record Selection screen displays, listing all
tables in the program subschema.
User’s Guide

120 Chapter 6 Define Database Access

ugpubb.book Page 120 Tuesday, February 19, 2002 9:39 AM
Figure 6-3. Database Record Selection Screen

Specify action
codes

3 Enter one or more action codes, in any order, in the Action field
next to the table that you want to access in the first call. For
example, Specifying Database Action Codes illustrates a simple call
that obtains and loops on table TDODET-REC, as indicated by the
o(btain) and l(oop) action codes next to the table. To allow the end
user to modify, erase from, and store to the table, enter the m, e,
and s action codes as well. To define nested loops, see Nested Loops.

Figure 6-4. Specifying Database Action Codes

Select columns 4 Press PF3 to display the Column Selection screen, which lists all
columns of the selected table, as shown in Column Selection Screen.
User’s Guide

Defining SQL Database Calls 121

ugpubb.book Page 121 Tuesday, February 19, 2002 9:39 AM
Note that Online Express identifies each index column with an
asterisk in the Index field.

Figure 6-5. Column Selection Screen

5 Select the columns for the call by entering s in the selection field
next to each column that you want to include. Alternatively, enter
d(elete) next to each column that you want to exclude. To select all
columns, enter a(ll) in the Select field at the top of the screen. To
display the definition of any column, enter ? in the selection field
next to it.

Update the
column list

6 Press PF3 to display the Column Selection Update screen, where you
see the list of columns that you selected for the call, as shown in
Column Selection Update Screen.
User’s Guide

122 Chapter 6 Define Database Access

ugpubb.book Page 122 Tuesday, February 19, 2002 9:39 AM
Figure 6-6. Column Selection Update Screen

Add, exclude, and
rearrange the

order of columns

7 Do any of the following:

• To add a column, insert a line with the i(nsert) line command
and enter the column name in the Column Name field.
Alternatively, insert a line, enter listcol in the Command field to
display a column list, and select a column from the list. Then
press PF3 to return to the Column Selection Update screen.

• To exclude a column, enter d(elete) in the selection field next to
it.

• To rearrange the order of the columns, use the line commands
m(ove), a(fter), and b(efore).

Override COBOL
host variables

• To override the default COBOL host variables with Working-
Storage fields or literals, simply overtype the host variable
names in the COBOL Name field. Doing so enables you to
change the destination for columns that the call obtains and to
update columns with literal values. These changes affect the
obtain, modify, and store actions as follows:

Override Value Effect

Working-Storage
field

Obtain action: Obtains the column value
into the Working-Storage field.

Modify and Store actions: Updates the
column with the Working-Storage field
value.
User’s Guide

Defining SQL Database Calls 123

ugpubb.book Page 123 Tuesday, February 19, 2002 9:39 AM
Obtain literal
values from a

column

• To obtain a literal value from a column, overtype a column
name with the literal, or insert a new line and enter the literal.

Assign SQL
functions

• To assign a SQL column or scalar function to one or more
columns, enter the function name in the Function field next to
the column(s), as shown in Column Selection Update Screen.
Alternatively, enter f(unction) in the selection field next to the
column to display a function list, select one from it, and press
PF3 to return to the Column Selection Update screen. When you
assign a column function--AVG, COUNT, MAX, MIN, or SUM--to
at least one, but not all, columns of a loop call, Online Express
generates a Group By clause. The Group By clause lists all other
columns, called grouping columns, in the order in which they
appear on the Column Selection Update screen. You can
rearrange the order using the line commands m(ove), a(fter),
and b(efore). To define an optional Having clause to specify
conditions that the group must satisfy, see step 11.

8 Press PF3 to display the SQL Qualification Specification screen,
where you qualify the columns that you selected, as shown in SQL
Qualification Specification Screen.

Literal Obtain action: Obtains the column value
into the default COBOL host variable.

Modify and Store actions: Updates the
column with the literal value.

Override Value Effect
User’s Guide

124 Chapter 6 Define Database Access

ugpubb.book Page 124 Tuesday, February 19, 2002 9:39 AM
Figure 6-7. SQL Qualification Specification Screen

Qualify columns 9 Qualify one or more columns by entering an operator and a
qualification value next to the column(s). A qualification value can
be a:

• COBOL host variable; APS automatically generates the colon
prefix.

• Working-Storage field.

• Number.

• Literal string enclosed in quotation marks or apostrophes.

• Subselect clause. To specify a Subselect, see below.

Specify Subselect
clauses

To specify a subselect clause for a column, enter a value in the
Operator field, and subselect in the Value(s) field to display the
Subselect Specification screen, as shown in See Subselect
Specification Screen. Alternatively, enter s(ubselect) in the selection
field next to the column.
User’s Guide

Defining SQL Database Calls 125

ugpubb.book Page 125 Tuesday, February 19, 2002 9:39 AM
Figure 6-8. Subselect Specification Screen

On the Subselect Specification screen, perform the following steps:

a Select a record for the subselect by entering s next to the record
in the From Record field.

b In the Column field, enter the column name for the subselect.
Alternatively, enter s(elect) in the selection field next to the
Column field to display a column list, select a column from the
list, and press Enter to return to the Subselect Specification
screen.

c In the Function field, you can enter a SQL function.
Alternatively, enter s(elect) in the selection field next to the
Function field to display a function list, select a function from it,
and press PF3 to return to the Subselect Specification screen.

d In the Where Qualification field, you can qualify the subselect
by entering values next to the Column, Oper, and Value fields.

e Press Enter to preview the subselect clause as it will appear
when generated. Then press PF3 to return to the SQL
Qualification Specification screen.

Use Boolean
qualifiers

To specify multiple conditions or value ranges for the call, enter the
Boolean qualifier AND or OR in the Bool field. When you specify
User’s Guide

126 Chapter 6 Define Database Access

ugpubb.book Page 126 Tuesday, February 19, 2002 9:39 AM
two or more Boolean qualifiers in a call, you can group the
qualification within parentheses as shown below:

Figure 6-9. Grouping Qualifiers

Use the OF
operator

If your qualification value is an elementary-level COBOL field that
belongs to multiple group-level fields, insert a line and enter the OF
operator and the group-level field to which it belongs. For example:

Figure 6-10. Using the OF Qualifier

Use Exists and Not
Exists clauses

To specify an Exists clause, first insert a blank line below the call by
entering i(nsert) in the selection field next to it. Leave the Column
Name field blank, enter exists or not exists in the Operator field,
and enter subselect in the Value field. Online Express displays the
Subselect Specification screen, where you specify your Exists clause
subselect criteria. Specify only one Exists clause per qualification.
Press PF3 to return to the SQL Qualification Specification screen.

10 Press PF3 to exit the SQL Qualification Specification screen. APS
displays one of the following screens, depending on the contents of
your call:

If your call contains ... APS displays the ...

No loop Database Access Summary
screen. The call definition is
complete.

Loop with no Group By columns Order By Columns screen.
Perform step 12.

Loop with Group By columns SQL Having Clause Specification
screen. Perform step 11.
User’s Guide

Defining SQL Database Calls 127

ugpubb.book Page 127 Tuesday, February 19, 2002 9:39 AM
Define Having
clauses

11 You can define a Having clause to qualify the Group By columns and
columns to which you have assigned column functions in steps 7 or
9. To do so, select H(aving) on the Database Access Summary screen.
The Having Clause Specification screen displays, as shown in
Grouping Qualifiers, showing all such columns. Qualify them just as
you qualify any column. In addition, you can assign column
functions to a Having clause as follows:

• To assign the COUNT column function to test the number of
rows found for the Group By columns, insert a line and enter *
in the Column Name field, and appropriate values in the
Operator and Value(s) fields. APS automatically displays the
function name abbreviation CNT next to the clause.

• To assign any other column function, enter f(unction) in the
selection field next to the clause to display a function list, and
select a function from it.

After you define a Having clause, press PF3 to display the Order By
Columns screen.

Figure 6-11. SQL Having Clause Specification Screen

Order the
columns

12 On the Order By Columns screen, specify the order in which the call
obtains and displays the columns, as shown in Using the OF
Qualifier. APS identifies the index column that you have selected, by
displaying an asterisk in the Index field. If your subschema contains
multiple indexes, APS displays only the last one listed in the
subschema. To add any index or non-index columns to the list, insert
a line and enter the column names. Alternatively, to display a
User’s Guide

128 Chapter 6 Define Database Access

ugpubb.book Page 128 Tuesday, February 19, 2002 9:39 AM
column selection list, enter listcol in the Command field and select
columns from it.

• If your call includes the modify or erase action codes, the index
must be unique.

• To limit the number of rows that a loop call obtains, specify that
number in the Optimize field.

Figure 6-12. Order By Columns Screen

13 Press PF3 to display the Database Access Summary screen. Your call
definition is complete.

Figure 6-13. Database Access Summary Screen
User’s Guide

Defining SQL Database Calls 129

ugpubb.book Page 129 Tuesday, February 19, 2002 9:39 AM
Preview and test
the call

14 You can preview the call definition as it will appear when
generated, and test execute the call using SPUFI, the external
interactive facility. To do so, follow these steps:

• On the Database Access Summary screen, preview the
generated call definition by entering v(iew) in the selection field
next to the call. The SQL Command Review screen displays, as
shown in Order By Columns Screen. Note that the call is shown
in the context of your program; several lines of your program
source code precede the call as comments.

Figure 6-14. SQL Command Review Screen

• Replace the call’s host variables with any literal values, because
SPUFI cannot use host variables.

• Enter save in the Command field to display the SQL Prototype
screen.

• Select option 1, Save SQL, to save the generated call.

• To access SPUFI, select option 3, Invoke XDBSQL or SPUFI.

15 To define subsequent calls for a program, repeat the above steps. To
modify any call definition, display the Database Access Summary
screen and select the appropriate options displayed at the bottom
of the screen. For example, to modify a call’s qualification, enter the
q (ualification) command in the selection field next to the call to
display the SQL Qualification Specification screen.
User’s Guide

130 Chapter 6 Define Database Access

ugpubb.book Page 130 Tuesday, February 19, 2002 9:39 AM
16 When you finish defining all calls for your program, view a summary
list of the calls by displaying the Database Access Summary screen.
Ensure that the calls appear in the order in which you want them to
execute. You can rearrange, add to, and delete from the list as
follows:

• Move any call to a position before or after another call by
typing m (move) next to the call, and either b (before) or a
(after) next to another call.

• Add a call definition in between calls in the list by typing i
(insert) next to a call and then defining the new call.

• Delete a call by typing d (delete) next to the call.

Defining Join Calls
1 Select option 6, Database Access, from the Online Express menu.

Alternatively, enter 6 or dba on any primary Online Express screen.
The Database Access Summary screen displays.

2 Enter s in the selection field next to a new call number. The
Database Record Selection screen displays, listing all tables in the
program subschema.

3 Select up to 16 tables for the Join by entering the o(btain) action
code and any other action codes next to the tables.

4 Press PF3 to display the Correlation Names screen, which shows
default correlation names for each selected table. To override the
default correlation names, simply overtype them. To reset the
default names, enter reset in the Command field.
User’s Guide

Defining SQL Database Calls 131

ugpubb.book Page 131 Tuesday, February 19, 2002 9:39 AM
Figure 6-15. Correlation Names Screen

5 Press PF3 to display the Column Selection screen.

6 Perform steps 5 through 16 in Defining Basic SQL Calls. Your Join call
definition is complete, as shown in Database Access Summary
Screen.

Figure 6-16. Database Access Summary Screen
User’s Guide

132 Chapter 6 Define Database Access

ugpubb.book Page 132 Tuesday, February 19, 2002 9:39 AM
Defining Union Calls

Select the
Database Access
Summary screen

1 Select option 6, Database Access, from the Online Express menu.
Alternatively, enter 6 or dba on any primary Online Express screen.
The Database Access Summary screen displays.

Define the first
Select statement

2 To define the first select statement of the Union, enter u(nion) next
to a new call number on the Database Access Summary screen. APS
displays the Database Record Selection screen.

3 Perform steps 3 through 9 in Defining Basic SQL Calls.

• Instead of selecting just one table on the Database Record
Selection screen, select up to 16 tables for the Join by entering
the o(btain) action code and any other action codes next to
them.

• APS displays the Correlation Names screen, which contains a
default correlation name for each selected table. To override
the names, simply overtype them. To reset the default names,
enter reset in the Command field. Press PF3 to display the
Column Selection screen.

Define Having
clauses

4 Press PF3 to exit the SQL Qualification Specification screen. APS
displays one of the following screens, depending on whether your
call contains Group By columns:

To define a Join within a Union, follow these steps:

5 You can define a Having clause to qualify the Group By columns and
columns to which you have assigned column functions in steps 7 or 9
inDefining Basic SQL Calls. The Having Clause Specification screen,
shown in Correlation Names Screen, displays all such columns.
Qualify them just as you qualify any column. In addition, you can
assign column functions to a Having clause as follows:

• To assign the COUNT column function to test the number of
rows found for the Group By columns, insert a line and enter *
in the Column Name field, and appropriate values in the

If your call contains ... APS displays the ...

Group By columns SQL Having Clause Specification
screen. Perform step 5.

No Group By columns Union Summary screen. Perform
step 6.
User’s Guide

Defining SQL Database Calls 133

ugpubb.book Page 133 Tuesday, February 19, 2002 9:39 AM
Operator and Value(s) fields. APS automatically displays the
function name abbreviation CNT next to the clause.

• To assign any other column function, enter f(unction) in the
selection field next to the clause to display a function list, and
select a function from it.

Figure 6-17. SQL Having Clause Specification Screen

6 After you define a Having clause, press PF3 to display the Union
Summary Menu. The Menu displays the first Select statement that
you just defined for the Union, as shown in Union Summary Menu.

Figure 6-18. Union Summary Menu
User’s Guide

134 Chapter 6 Define Database Access

ugpubb.book Page 134 Tuesday, February 19, 2002 9:39 AM
Define the next
Select statement

7 On the Union Summary Menu, define the next Select statement by
entering s in the selection field next to Select Stmt 02. APS displays
the Database Record Selection screen. Repeat steps 3 through 6
above to define as many Select statements as you need for the
Union. Online Express returns all column data to the host variables
of the first Select statement.

Pad the Select
statement

columns

8 After you define all the Select statements, check the Number of
Columns field to see whether each statement has an equal number
of columns. If they do not, do the following:

• Ensure that the statement with the greatest number of columns
is the first statement in the list. The other statements can be in
any order. Remember that Online Express returns all column
data to the host variables of the first Select statement.

• Ensure that the columns of each Select statement correspond to
each other properly. If the last column in the first statement has
no corresponding column, Online Express automatically pads
the omitted column(s) with an appropriate value--either a blank
character, a zero, DATE, TIME, or TIMESTAMP.

For example, Online Express pads the third column of
statement 2, below:

If any column except the last column in the first statement has
no corresponding column, you must pad the omitted column(s)
on the Column Selection Update screen. For example, you must
pad the second column of statement 2, below:

• To pad any column, enter c(olumn selection) next to the Select
statement to display the Column Selection Update screen. Insert
a line between the appropriate columns and enter * in the
Column Name field. Online Express pads the column with an
appropriate value.

Stmt 1 Column 1 Column 2 Column 3

Stmt 2 Column 1 Column 2

Stmt 3 Column 1 Column 2 Column 3

Stmt 1 Column 1 Column 2 Column 3

Stmt 2 Column 1 Column 3

Stmt 3 Column 1 Column 2 Column 3
User’s Guide

Defining SQL Database Calls 135

ugpubb.book Page 135 Tuesday, February 19, 2002 9:39 AM
Ensure matching
columns

9 After you define all the Select statements for the Union, press PF3
on the Union Summary Menu. If each column’s corresponding
column(s) match in data type and length, APS displays the Order By
Columns screen; perform step 12. If any columns are mismatched,
APS displays the mismatched columns on the Union Columns Cross
Reference screen.

10 On the Union Columns Cross Reference screen, examine the data
type and length of each column to find the error. Note which
columns do not match, and press PF3 to return to the Union
Summary Menu.

11 To correct the mismatch, enter c(olumn selection) in the selection
field next to the Select statement that contains the mismatch. APS
displays the Column Selection Update screen, where you can make
the necessary changes. Then press PF3 to return to the Union
Summary screen to ensure that the columns match now, and press
PF3 to display the Order By Columns screen.

Order the
columns

12 Specify the order in which the call obtains and displays the columns,
as described in step 12 in Defining Basic SQL Calls.

13 Press PF3 to display the Database Access Summary screen. Your
Union call definition is complete.

Figure 6-19. Database Access Summary Menu

Preview and test
the call

14 To preview and test the call, see step 14 in Defining Basic SQL Calls.
User’s Guide

136 Chapter 6 Define Database Access

ugpubb.book Page 136 Tuesday, February 19, 2002 9:39 AM
Special Considerations
• While Online Express lets you completely define database calls

without having to code them, you can also extend and customize
those calls to suit your needs. See Customized Database Calls.

• If you specify multiple loops in your program, you must specify
which loop that you plan to map to a repeated record block on your
program screen. By default, Online Express assigns a 1 in the Blk
(Block) field of the first loop on the Database Access Summary
screen, and leaves the field blank for all other calls. If you plan to
map fields of a different loop, enter the value 1 in its Blk field, and
blank out the default Blk field value of the first loop. For more
information, see Nested Loops.

• You can use COUNT(*) in Online Express. You code a COUNT(*) as
follows:

a Create a database call in Online Express.

b From the database call summary type C in the line command to
access the column selection.

c Insert a line with ’I’ in the line command field.

d Under Function type COUNT; under Column Name type a
asterisk (*); under Cobol Name type the name of the working
storage field to receive the count, for example WS-COUNT.

e When you generate the COBOL you get SQL similar to the
following:

SELECT COUNT(*) FROM TABLEA INTO WS-COUNT.

Defining IMS Database Calls
Using IMS

database calls
You can define IMS database calls to obtain, loop, modify, erase, and
store any record. For example, you can obtain a parent record and loop
on its child records to obtain multiple records that the end user can
modify, erase, and store. Online Express stores a child record for the
parent record that is currently obtained when the store action executes.
User’s Guide

Defining IMS Database Calls 137

ugpubb.book Page 137 Tuesday, February 19, 2002 9:39 AM
Follow these steps to define an IMS database call for any record:

Select the
Database Access
Summary screen

1 Select option 6, Database Access, from the Online Express menu.
Alternatively, enter 6 or dba on any primary Online Express screen.
The Database Access Summary screen displays.

Figure 6-20. Database Access Summary Screen

Define the first
call

2 To define the first call, enter s in the selection field next to call
number 01. The Database Record Selection screen displays, listing all
records in the program subschema. IMS parent and child records
display, showing their parent/child relationships. Child records
appear indented from their parents, as shown in Database Record
Selection Screen.

Figure 6-21. Database Record Selection Screen
User’s Guide

138 Chapter 6 Define Database Access

ugpubb.book Page 138 Tuesday, February 19, 2002 9:39 AM
Specify actions 3 Enter one or more action codes, in any order, in the Action field
next to the record of the first call. For example, Specifying Database
Action Codes illustrates a simple call that obtains and loops on a
parent record and allows the end user to modify, erase, and store it,
as indicated by the o, l, m, e, and s action codes entered next to the
record. To define nested loops, see Nested Loops.

Figure 6-22. Specifying Database Action Codes

Obtain a child
record

4 To obtain a child record of the parent that you just obtained, define
another call to position the database pointer on the parent record
and obtain the child. To do so, enter the p(osition) action code next
to the parent record, and the o(btain) action code next to the child.
To loop on the child, also enter the l(oop) action next to the parent.
For example, to position on TIORDR-REC and loop on TIODET-REC,
enter the p(osition) and l(oop) action codes next to TIORDR-REC,
and the o(btain) action code next to TIODET-REC, as shown in
Positioning on a Parent Record to Obtain and Loop on Its Child.

In addition, you can enter the m(odify), e(rase), and s(tore) action
codes next to the child record if you want the end user to be able to
perform those actions against it.

Figure 6-23. Positioning on a Parent Record to Obtain and Loop on Its
Child

Qualify the record 5 From the current Database Record Selection screen, enter s in the
selection field next to the record that you want to obtain. The
User’s Guide

Defining IMS Database Calls 139

ugpubb.book Page 139 Tuesday, February 19, 2002 9:39 AM
Database Qualification screen displays, listing all fields of the
selected record, as shown in Database Qualification Screen.

Figure 6-24. Database Qualification Screen

6 Qualify the record on one or more fields by entering an operator
and a qualification value next to the field(s). A qualification value
can be a COBOL screen field, Working-Storage field, a number, or a
literal enclosed in quotes or apostrophes. To specify multiple
conditions or value ranges for the call, enter the Boolean qualifier
AND or OR. To let you specify Boolean qualification for a key field,
APS copies the key field onto the next line. You can qualify the
following types of fields described below. The field type for the
field displays in the Ty(pe) field on the screen.

For example, in Qualifying a Record below, note that the call is
qualified using Boolean qualification on three fields.

Field Type Description

KY Key field.

SQ Sequence field of a child record’s index set.

SR Non-unique search field.
User’s Guide

140 Chapter 6 Define Database Access

ugpubb.book Page 140 Tuesday, February 19, 2002 9:39 AM
Figure 6-25. Qualifying a Record

If your qualification value is a record field that must reference
another field at a higher level in the hierarchy, insert a line and
specify the OF operator in the Op field and the higher-level field in
the Value field.

Save and review
the specifications

7 When you finish qualifying the record, save your specifications.

8 View a summary of the call that you just defined by pressing PF3
twice. Note in Database Access Summary Screen that call 01 obtains,
loops on, modifies, erases, and stores TIORDR-REC, qualified on its
key field. Call 02 finds the currently-obtained TIORDR-REC and loops
on its detail records, which the end user can modify, erase from, and
store additional records with.

Figure 6-26. Database Access Summary Screen
User’s Guide

Defining VSAM Database Calls 141

ugpubb.book Page 141 Tuesday, February 19, 2002 9:39 AM
Define additional
calls

9 Repeat the above steps to define subsequent calls for a program, or
to modify call definition.

View list of all
calls

10 When you finish defining all calls for your program, view a summary
list of the calls by displaying the Database Access Summary screen.
Ensure that the calls appear in the order in which you want them to
execute. Rearrange, add to, and delete from the list as follows:

• Move any call to a position before or after another call by
typing m (move) next to the call, and either b (before) or a
(after) next to another call.

• Add a call definition between calls in the list by typing i (insert)
next to a call and then defining the new call.

• Delete a call by typing d (delete) next to the call.

Special Considerations
• While Online Express lets you completely define database calls

without having to code them, you can also extend and customize
those calls to suit your needs. See Customized Database Calls.

• If you specify multiple loops in your program, you must specify
which loop you plan to map to a repeated record block on your
program screen. By default, Online Express assigns the value 1 in the
Blk (Block) field of the first loop on the Database Access Summary
screen, and leaves the field blank for all other calls. If you plan to
map fields of a different loop, enter the value 1 in its Blk field, and
blank out the default Blk field value of the first loop. For more
information, see Nested Loops.

Defining VSAM Database Calls
You can define VSAM database calls to obtain, loop, modify, erase, and
store any record. Follow these steps to define VSAM database calls:

Select Database
Access

1 Select option 6, Database Access, from the Online Express menu.
Alternatively, enter 6 or dba on any primary Online Express screen.
The Database Access Summary screen displays.
User’s Guide

142 Chapter 6 Define Database Access

ugpubb.book Page 142 Tuesday, February 19, 2002 9:39 AM
Figure 6-27. Database Access Summary Screen

Define the first
call

2 To define the first call, enter s in the selection field next to call
number 01. The Database Record Selection screen displays, listing all
records in the program subschema, as shown in Database Record
Selection Screen.

Figure 6-28. Database Record Selection Screen

Specify action
codes

3 Enter one or more action codes, in any order, in the Action field
next to the record of the first call. For example, Specifying Database
Action Codes illustrates a simple call that obtains and loops on a
record and allows the end user to modify, erase, and store it, as
indicated by the o, l, m, e, and s action codes entered next to the
record. To define nested loops, see Nested Loops.
User’s Guide

Defining VSAM Database Calls 143

ugpubb.book Page 143 Tuesday, February 19, 2002 9:39 AM
Figure 6-29. Specifying Database Action Codes

Qualify the record 4 Access the Database Qualification screen by entering s in the
selection field next to the record that you want to obtain. The
Database Qualification screen displays, listing all fields of the
selected record, as shown in Database Qualification Screen.

Figure 6-30. Database Qualification Screen

5 Qualify the record on one or more fields by entering an operator
and a qualification value next to the field(s). A qualification value
can be either a COBOL screen field or Working-Storage name, or a
literal enclosed in quotation marks. You can qualify the following
User’s Guide

144 Chapter 6 Define Database Access

ugpubb.book Page 144 Tuesday, February 19, 2002 9:39 AM
types of fields, as shown below. Each field’s type automatically
displays in the Ty(pe) field on the screen.

For example, in Qualifying a Record, the key field CO-ORDER-NO
qualifies the record. The qualification is satisfied when the end user
enters a value in the screen field PM-PART-NO is greater than or
equal to the value in the database record TVPM-START-BROWSE.

Figure 6-31. Qualifying a Record

To qualify a record on a key field that consists of multiple fields,
create a group-level qualification value field and move the values of
the fields to it. You then qualify the key with the qualification value
field. See Multiple-Field Key Qualification.

Save and review
the specifications

6 When you finish qualifying the record, save your specifications.

7 View a summary of the call that you just defined by pressing PF3
twice. Note in Database Access Summary Screen that call 01 obtains,
loops on, modifies, erases, and stores TVPM-START-BROWSE,
qualified on its key field.

Field Type Description

KY Key field. To qualify on a partial key, type over the
value in the Len(gth) field.

PR Primary index.

SR Non-unique search field.
User’s Guide

Defining VSAM Database Calls 145

ugpubb.book Page 145 Tuesday, February 19, 2002 9:39 AM
Figure 6-32. Database Access Summary Screen

Define additional
calls

8 Repeat the above steps to define subsequent calls for a program, or
to modify any call definition.

9 When you finish defining all calls for your program, view a summary
list of the calls by displaying the Database Access Summary screen.
Ensure that the calls appear in the order in which you want them to
execute. You can rearrange, add to, and delete from the list as
follows:

• Move any call to a position before or after another call by
typing m (move) next to the call, and either b (before) or a
(after) next to another call.

• Add a call definition in between calls in the list by typing i
(insert) next to a call and then defining the new call.

• Delete a call by typing d (delete) next to the call.

Special Considerations
• While Online Express lets you completely define database calls

without having to code them, you can also extend and customize
those calls to suit your needs. See Customized Database Calls.

• If you specify multiple loops in your program, you must specify
which loop that you plan to map to a repeated record block on your
program screen. By default, Online Express assigns the value 1 in the
User’s Guide

146 Chapter 6 Define Database Access

ugpubb.book Page 146 Tuesday, February 19, 2002 9:39 AM
Blk (Block) field of the first loop on the Database Access Summary
screen, and leaves the field blank for all other calls. If you plan to
map fields of a different loop, enter the value 1 in its Blk field, and
blank out the default Blk field value of the first loop. For more
information, see Nested Loops.

Defining IDMS Database Calls
Using IDMS

database calls
You can define IDMS database calls to obtain, loop, modify, erase, and
store any record-an owner record, a member record, or an independent
record that is neither an owner or member. For example, you can obtain
an owner record and loop on its member records to obtain multiple
records that the end user can modify, erase, and store. Online Express
stores a member record for the owner record that is currently obtained
when the store action executes.

Connecting and
disconnecting

records in
owner/member

sets

In addition, you can connect and disconnect records in owner/member
sets. For example, you might want to change ownership of an employee
record from one department record to another. To do so, you use action
codes to disconnect the employee record from its current department
record, and connect it to a different department record. Or you might
want to disconnect the ownership of the employee record completely,
making it an independent record. All records in a disconnect/connect
operation must be current of record type, meaning that they must be
obtained immediately before the operation executes.

Follow these steps to define an IDMS database call for any record:

Select Database
Access

1 Select option 6, Database Access, from the Online Express menu.
Alternatively, enter 6 or dba on any primary Online Express screen.
The Database Access Summary screen displays.
User’s Guide

Defining IDMS Database Calls 147

ugpubb.book Page 147 Tuesday, February 19, 2002 9:39 AM
Figure 6-33. Database Access Summary Screen

Define the first
call

2 To define the first call, enter s in the selection field next to call
number 01. The Database Record Selection screen displays, listing all
records in the program subschema. IDMS owner and member
records display, showing their owner/member set relationships.
Member records appear indented from their owners, as shown in
Database Record Selection Screen.

Figure 6-34. Database Record Selection Screen

Specify actions 3 Enter one or more action codes, in any order, in the Action field
next to the record of the first call. For example, Specifying Database
Action Codes illustrates a simple call that obtains and loops on an
owner record and allows the end user to modify, erase, and store it,
User’s Guide

148 Chapter 6 Define Database Access

ugpubb.book Page 148 Tuesday, February 19, 2002 9:39 AM
as indicated by the o, l, m, e, and s action codes entered next to the
record. To define nested loops, see Nested Loops.

Figure 6-35. Specifying Database Action Codes

Obtain member
records

4 To obtain a member record of the owner that you just obtained,
define another call to find the owner record and obtain the
member. To do so, enter the p action code next to the owner record,
and the o(btain) action code next to the member. To loop on the
member, also enter the l(oop) action next to the owner. For
example, to find TIORDR-REC and loop on TIODET-REC, enter the p
and l(oop) action codes next to TIORDR-REC, and the o(btain) action
code next to TIODET-REC, as shown in Finding an Owner Record to
Obtain and Loop on Its Member.

In addition, you can enter the m(odify), e(rase), and s(tore) action
codes next to the member record if you want the end user to be
able to perform those actions against it.

Figure 6-36. Finding an Owner Record to Obtain and Loop on Its
Member
User’s Guide

Defining IDMS Database Calls 149

ugpubb.book Page 149 Tuesday, February 19, 2002 9:39 AM
Qualify the record 5 From the current Database Record Selection screen, access the
Database Qualification screen by entering s in the selection field
next to the record that you want to obtain. The Database
Qualification screen displays, listing all fields of the selected record,
as shown in Database Qualification Screen.

Figure 6-37. Database Qualification Screen

6 Qualify the record on one or more fields by entering an operator
and a qualification value next to the field(s). A qualification value
can be either a COBOL screen field or Working-Storage name, or a
literal enclosed in quotation marks. You can qualify the following
types of fields, as shown below. Each field’s type automatically
displays in the Ty(pe) field on the screen.

For example, in Qualifying a Record below, the key field CO-ORDER-
NO qualifies the record. The qualification is satisfied when the end
user enters a value in the screen field TIOM-ORDER-NO that equals a
value in the database record field CO-ORDER-NO.

Field Type Description

AD Address field, if one exists. Online Express displays the
address field as a field named DB-KEY.

CA CALC key field.

KY Key field.

SQ Sequence field of a member record’s index set.

SR Non-unique search field.
User’s Guide

150 Chapter 6 Define Database Access

ugpubb.book Page 150 Tuesday, February 19, 2002 9:39 AM
Figure 6-38. Qualifying a Record

To qualify a record on a key field that consists of multiple fields,
create a group-level qualification value field and move the values of
the fields to it. You then qualify the key with the qualification value
field. See Multiple-Field Key Qualification, later in this chapter.

Save and review
the specifications

7 When you finish qualifying the record, save your specifications.

8 View a summary of the call that you just defined by pressing PF3
twice. Note in Database Access Summary Screen that call 01 obtains,
loops on, modifies, erases, and stores TIORDR-REC, qualified on its
key field. Call 02 finds the currently-obtained TIORDR-REC and loops
on its detail records, which the end user can modify, erase from, and
store additional records with.

Figure 6-39. Database Access Summary Screen
User’s Guide

Defining IDMS Database Calls 151

ugpubb.book Page 151 Tuesday, February 19, 2002 9:39 AM
9 Repeat the above steps to define subsequent calls for a program, or
to modify any call definition.

10 When you finish defining all calls for your program, view a summary
list of the calls by displaying the Database Access Summary screen.
Ensure that the calls appear in the order in which you want them to
execute. You can rearrange, add to, and delete from the list as
follows:

• Move any call to a position before or after another call by
typing m (move) next to the call, and either b (before) or a
(after) next to another call.

• Add a call definition in between calls in the list by typing i
(insert) next to a call and then defining the new call.

• Delete a call by typing d (delete) next to the call.

Special Considerations
• While Online Express lets you completely define database calls

without having to code them, you can also extend and customize
those calls to suit your needs. See Customized Database Calls.

• If you specify multiple loops in your program, you must specify
which loop that you plan to map to a repeated record block on your
program screen. By default, Online Express assigns the value 1 in the
Blk (Block) field of the first loop on the Database Access Summary
screen, and leaves the field blank for all other calls. If you plan to
map fields of a different loop, enter the value 1 in its Blk field, and
blank out the default Blk field value of the first loop. For more
information, see Nested Loops.

Connecting and Disconnecting Records
You can define database calls that connect and disconnect records to
and from owner/member sets. To do so, perform the following steps:

1 Ensure that you have defined the Update function in your program
definition and on the program screen.

2 Define a call that obtains the member record that you want to
disconnect by entering the o(btain) action code next to it.
User’s Guide

152 Chapter 6 Define Database Access

ugpubb.book Page 152 Tuesday, February 19, 2002 9:39 AM
3 Define a call that finds the member’s owner record by entering the
p action code next to the owner.

4 Define a call that disconnects the member from its current owner
record by entering the d(isconnect) action code next to the member.

5 Define a call that obtains the new owner record that you want to
connect the member record to.

6 Define a call that connects the member record to the new owner by
entering the c(onnect) action code next to the member.

7 Display the Database Access Summary screen to view all calls that
you created in the above steps, as shown in Database Access
Summary of Connect/Disconnect Program.

Database Access Summary of Connect/Disconnect Program:

 Function Action Data Base Record Qualifier Nesting
-- -------- ------ --------------------- --------- -------
01 *UPDATE O EMPLOYEE-REC *KEYQUAL 0
02 *UPDATE P DEPT-A-REC *NO-QUAL 0
03 *UPDATE D EMPLOYEE-REC *NO-QUAL 0
04 *UPDATE O DEPT-B-REC *KEYQUAL 0
05 *UPDATE C EMPLOYEE-REC *NO-QUAL 0

8 Enter *update in the Function field of each call to update the
modified owner/member relationship, as shown in Database Access
Summary of Connect/Disconnect Program. The *update entries
cause the program to execute all the calls when the end user
executes the Update function on the program screen.

Customized Database Calls
Six basic tailoring

options
While Online Express lets you completely define database calls without
having to code them, you can also extend and customize those calls to
suit your needs. Use any of the following techniques, in any of the
supported database environments:

• Define nested loop calls.

• Execute multiple database actions with one program function.
User’s Guide

Customized Database Calls 153

ugpubb.book Page 153 Tuesday, February 19, 2002 9:39 AM
• Write and execute custom processing routines at APS-provided
locations in your program known as database call control points.
Control points let you add customized error processing routines and
routines that you want to execute before or after a database call.

• Override status codes and error messages.

• Qualify a record key that consists of multiple fields.

• Execute a call as a custom program function anywhere that you can
perform a paragraph, such as at a program control point.

The following sections explain these techniques.

Nested Loops
Using nested

loops
You use nested loops to obtain multiple occurrences of multiple records.
Loops that are not nested obtain multiple occurrences of a single
record. You can map any loop records to a repeated record block, list
box, or combination box on your screen, or you can loop on records to
calculate field totals, and display just the calculation results.

Nesting levels When you define two loop calls in a program, the first loop is an outer
loop, and the second loop is an inner, or nested, loop. The nested loop
executes repeatedly each time that the outer loop executes once, and
obtains all records that satisfy the outer loop record key. For example,
you might want to loop on all order records of a particular customer,
and loop on all detail records of all the order records.

Or you might want to loop on a record to obtain a certain record
occurrence that you loop on again, and display just the second loop’s
records. For example, if your program must display all items to be
included in the next shipment to a certain customer, you first loop on all
outstanding orders for the customer to determine which order ships
next. You then loop on that order to obtain all its detail records.
Executing the Store Action When Querying a Record and Database Call
Tailoring Screen illustrate this example.

To indicate that the inner loop is nested within the outer loop, Online
Express assigns the default nesting level value - 1 to it on the Database
Access Summary screen. The outer loop’s nesting level is 0, indicating
that it is not nested.
User’s Guide

154 Chapter 6 Define Database Access

ugpubb.book Page 154 Tuesday, February 19, 2002 9:39 AM
When you define more than two loops, each loop is nested within the
previous loop. That is, the second loop is nested within the first, and the
third loop is nested within the second. The default nesting level of the
third loop is - - 2. You can define as many nested loops in your program
as you need.

Example of
nested loop calls

In the sample IMS program in A Nested Loop, a nested loop obtains all
detail records of each order record that is obtained by the program’s
previous loop. In addition, the call following the nested loop obtains
the part master record for each detail record. Fields from all three
records display in a repeated record block on the program screen.

Figure 6-40. A Nested Loop

The sample program above executes as follows:

• Call 01 obtains the customer record. It is qualified on the customer
record key, the customer number.

• Call 02 is the outer loop. It loops on the order record, qualified on
the order record key, the customer number. When the outer loop
finds the first order, call 03 executes.

• Call 03 is the nested loop. It positions the database pointer on the
currently-obtained first order and loops on the detail record. When
it finds the detail record that is associated with the first order, call
04 executes.

• Call 04 is an obtain call, nested within the second loop. It obtains
the part master record associated with the detail record that was
obtained by the nested loop.

• Calls 03 and 04 execute repeatedly until no more detail and part
master records are found for the first order record.

• Call 02 executes again, obtaining the second order record.
User’s Guide

Customized Database Calls 155

ugpubb.book Page 155 Tuesday, February 19, 2002 9:39 AM
• Calls 03 and 04 execute repeatedly until no more detail and part
master records are found for the second order record.

• Calls 02 through 04 execute repeatedly until no more order, detail,
or part master records are found for the customer number specified
in the customer record call, call 01.

Overriding
nesting levels

Depending on what you want your program to do, you might need to
override the nesting levels of nested loops to nest them under different
loops, or to execute them independently of other loops. By default,
Online Express assigns default nesting levels to each loop, in the Nesting
field on the Database Access Summary screen. If you define three loops
in your program, their default Nesting field values are as follows:

You can decrease the default nesting level of any loop simply by typing
over the Nesting field value. For example, if you want the second loop
to execute independently of the first loop, you change its nesting level
from - 1 to 0. Or, if you want the third loop to be nested within the first
loop rather than the second, you change its nesting level from - - 2 to -
1. APS ensures that your nesting levels do not skip a level. For example,
you cannot specify a level 0 loop, followed by a level - - 2 loop.

When you override nesting levels, ensure that the value 1 appears in the
Blk (Block) field of the outer loop that you plan to map to a repeated
record block on your program screen. For example, if you have two
loops with the nesting level 0, and you want to map fields of only the
second loop to your screen, blank out the default value 1 in the Blk field
of the first loop, and enter 1 in the Blk field of the second loop.

Example of
overridding

nesting levels

In the following example, the program must display all items to be
included in the next shipment to a certain customer. The first loop reads
all outstanding orders for the customer and executes a user-defined
routine to determine which order ships next. The second loop obtains
all detail records of the order found by the first loop, and maps them to
a repeated record block.

Note that if the default nesting level of the second loop is used, the
program would not execute as required. The program would loop on
and obtain all customer order records and their detail records. In

Loop Nesting Value Description

1 0 Loop is not nested

2 - 1 Loop is nested within loop 1

3 - - 2 Loop nested within loop 2
User’s Guide

156 Chapter 6 Define Database Access

ugpubb.book Page 156 Tuesday, February 19, 2002 9:39 AM
addition, Online Express would assume that records of the first loop will
map to the repeated block.

To make the program execute as required, note in Overridden Nesting
Level and Blk Values that:

• The nesting level of calls 02 and 03 are changed from - 1 to 0 to
make them not nested within the first loop.

• The Blk field value of the first loop is changed from 1 to spaces to
indicate that the loop does not display in the repeated record block.

• The Blk field value of the second loop is changed from spaces to 1 to
indicate that the loop does display in the repeated record block.

Figure 6-41. Overridden Nesting Level and Blk Values

Functions with Multiple Database
Actions

You can define a program function to execute more than one database
action. For example, you can define the query function to execute the
store action as well as the obtain action.

Suppose you want to store in a log record the ID of each end user who
queries a customer order record. You define one call to obtain the order
record, and another call to store the IDs in another record, as shown in
Executing the Store Action When Querying a Record. To cause the query
function to execute the store call as well as the obtain call, you enter
the value *query in the Function field next to the store call. You then
customize the store call with user-defined logic to move the user IDs to
the log record. To write and execute custom logic for database calls, see
Custom Logic at Database Call Control Points.
User’s Guide

Customized Database Calls 157

ugpubb.book Page 157 Tuesday, February 19, 2002 9:39 AM
Figure 6-42. Executing the Store Action When Querying a Record

Custom Logic at Database Call Control
Points

Write custom
logic for database

calls

Without leaving Online Express, you can write and automatically
execute custom database call processing logic to supplement or override
the default logic that Online Express generates. You execute custom
logic at any of several APS-provided locations in your program, known
as database call control points. The control points let you add
processing logic before and after a database call, and when calls
execute normally or abnormally. You select control points from a list
that displays on the Database Call Tailoring screen. The list includes the
following control points:

Control Point Location

Befor DB Access Before a non-loop database call executes

Before Loop Before a loop database call executes

Normal Status
(Before Record is
Processed)

Before Online Express maps looped records to
the screen

Normal Status After Online Express maps any records to the
screen

Exception Status After the database call returns a status flag with
the Exception status code

Error Status After the database call returns a status flag with
the Error status code

After DB Access After a non-loop database call executes

After Loop After a loop database call executes
User’s Guide

158 Chapter 6 Define Database Access

ugpubb.book Page 158 Tuesday, February 19, 2002 9:39 AM
Write local or
global custom

processing logic

You can write control point logic specifically for one program, or for use
throughout your application. Program-specific custom logic is known as
a local program stub; custom logic that you use throughout your
application is known as a global program stub. Alternatively, you can
write a macro and invoke it in any program of any application. You
execute any stub or macro at any control point.

Local stubs A local stub can consist of Procedure Division and Data Division code.
You write a local stub in the Specification Painter, which you access from
the Database Call Tailoring screen.

Global stubs A global stub can consist of Procedure Division paragraphs. You write a
global stub in the Program Painter, which you access from the
Application Painter.

User-defined
macros

A macro can consist of any code that you write using the APS
Customization Facility, a high-level tool for writing and processing
macros. You include macro library members in your application on the
Application Painter screen.

Tailor individual
database call

actions

You add custom logic to, or tailor, each action of a database call
individually. For example, you might want to tailor the obtain action by
adding a data validation routine that executes whenever the obtain
action executes.

The Normal Status
control points

The Normal Status (Before Record is Processed) control point lets you
add custom logic before looped records map to a repeated record block
on your screen. Use this control point if you want to map only some of
the records that a loop obtains. In your stub or macro, write conditional
logic to determine which records to map. Online Express provides a flag,
OK-TO-PROCEED, that you set to True to map and process the record, or
False to bypass mapping and processing. You can ignore the flag if you
do not use this control point; the flag is set to True by default. To add
custom logic after Online Express maps any record to your screen, use
the Normal Status control point.

The following example illustrates both control points. Suppose that you
must map the records that show annual sales of $100,000 or more in the
Northwest region, and calculate and map the grand total of those
records. You first define a loop call and qualify it to obtain the records
of $100,000 or more. Then you tailor the loop call with two local stubs.

The first stub checks the records obtained by the loop to allow only
records of the Northwest region to be processed further. The second
stub calculates the grand total of those records, and maps the total to
User’s Guide

Customized Database Calls 159

ugpubb.book Page 159 Tuesday, February 19, 2002 9:39 AM
the screen. The generated loop call and stub paragraphs are shown
below:

DB-PROCESS REC SALES-RECORD
... WHERE ANNUAL-SALES-TOTAL > 99999
 PERFORM CHECK-BEFORE-MAPPING-STUB-PARA
 IF OK-TO-PROCEED
 ADD 1 TO CTR
 PERFORM RECORD-STOREKEY-PARA
 MOVE REC-TO-SCREEN-BLK1
 PERFORM CHECK-AFTER-MAPPING-STUB-PARA
.
.
.
CHECK-BEFORE-MAPPING-PARA
 TRUE OK-TO-PROCEED
 IF SALES-REGION NOT = NORTHWEST
 FALSE OK-TO-PROCEED

CHECK-AFTER-MAPPING-PARA
 calculation and mapping routine for grand total

Note that:

• Online Express generates the loop call as an APS DB-PROCESS call.

• The CHECK-BEFORE-MAPPING paragraph is written and executes at
the Normal Status (Before Record is Processed) control point. Online
Express generates the paragraph’s PERFORM statement.

• The CHECK-AFTER-MAPPING paragraph is written and executes at
the Normal Status control point. Online Express generates the
paragraph’s PERFORM statement.

• Online Express generates all other lines of code that are subordinate
to the DB-PROCESS call.

Adding Custom
Logic To a Call

Write and automatically execute custom logic for a call as follows :

1 Display the call on the Database Access Summary screen.

2 Enter t(ailoring) next to the call to display the Database Call
Tailoring screen.

3 Specify which action that you want to customize by entering its
action code, such as o(btain) or s(tore), in the Action To Be Tailored
field, as shown in Database Call Tailoring Screen. You can tailor the
Obtain, Modify, Store, and Erase actions.
User’s Guide

160 Chapter 6 Define Database Access

ugpubb.book Page 160 Tuesday, February 19, 2002 9:39 AM
Figure 6-43. Database Call Tailoring Screen

4 In the Action field next to the control point where you want to add
logic, either invoke a macro that contains the logic, execute a global
stub that contains the logic, or write and execute the logic in a local
stub, as follows:

• To invoke a macro, enter $ in the Action field, and the macro
name in the Control Point Name field. The macro must reside in
the USERMACS library member that you specify on the
Application Painter screen. For rules on writing macros, see the
APS Customization Facility User’s Guide.

• To execute a global stub, enter g in the Action field, and the
global stub name in the Control Point Name field. You must
define the global stub in the Program Painter and specify its
name on the Application Painter screen. For rules on writing
global stubs, see Custom Program Functions.

• To write and execute a local stub, perform steps 5 and 6.

5 To write a local stub, first enter e(dit) in the Action field next to the
control point where you want to write the logic. The Specification
Painter displays, as shown in Error Flag Status Codes.
User’s Guide

Customized Database Calls 161

ugpubb.book Page 161 Tuesday, February 19, 2002 9:39 AM
Figure 6-44. Writing a Local Stub in the Specification Painter

6 Write the local stub in the Specification Painter and save it. For rules
on writing local stubs, see Defining Custom Program Functions. You
do not name a local stub. After you save the stub, Online Express
redisplays the Database Call Tailoring screen with the message
PAINTED next to the control point.

Status Codes and Error Messages
You can customize database call processing to override the status codes
of Online Express status flags and the text of default error messages.
You do both on the Database Call Tailoring screen.

Online Express provides five status flags. By default, all status flags
except OK-ON-REC return the Error status code, as shown below:

When Online Express returns the Error status flag, the program aborts
and performs the Error-Send-And-Quit paragraph.

Overriding status
codes

To override the default Error flag processing, you can change a status
flag’s status code from Error to Exception, and then write your own
error routines at control points on the Call Tailoring screen. You do so

Status Flag Default Status Code

OK-ON-REC N(ormal)

END-ON-REC E(rror)

NTF-ON-REC E(rror)

DUP-ON-REC E(rror)

VIO-ON-REC E(rror)
User’s Guide

162 Chapter 6 Define Database Access

ugpubb.book Page 162 Tuesday, February 19, 2002 9:39 AM
by overtyping the status code values in the Status Matrix fields, as
shown in Error Flag Status Codes and writing error routines as described
in Custom Logic at Database Call Control Points. To just prevent the
Error flag from aborting the program, specify n for the Abort On Error
field on the Database Call Tailoring screen.

Figure 6-45. Error Flag Status Codes

Overriding error
messages

Online Express generates error messages that show which type of call
failed and which record caused the failure. You can override the default
messages with either a text message or a macro that contains a text
message. To do so, enter either the text or the macro name in the Error
Message field, and specify in the Error Message Type field whether you
entered text or a macro.

Multiple-Field Key Qualification
Qualify group-

level keys
To qualify a VSAM or IDMS group-level key field, you write custom logic
that moves the key’s elementary field values to a group-level
qualification value field that you define. You then qualify the key with
the qualification value field. For example, suppose that a key has the
following elementary fields:

01 SALES-KEY.
 05 REGION-CODE PIC X(2).
 05 YEAR-CODE PIC X(2).
User’s Guide

Customized Database Calls 163

ugpubb.book Page 163 Tuesday, February 19, 2002 9:39 AM
You write custom logic that defines a group-level Working-Storage field
and moves the values of the two elementary fields to it, as follows:

-KYWD- 12-*----20---*----30---*----40---*----50---*--
 MOVE SCREEN-REGION-CODE TO REGION-CODE
 MOVE SCREEN-YEAR-CODE TO YEAR-CODE
 WS01 NEW-SALES-KEY.
 05 REGION-CODE PIC X(2).
 05 YEAR-CODE PIC X(2).

On the Database Qualification screen, you qualify the key field, SALES-
KEY, with the qualification value field, NEW-SALES-KEY.

Write and execute
the custom logic

You write and execute the custom logic at the Before DB Access control
point, on the Database Call Tailoring screen. See Custom Logic at
Database Call Control Points.

Qualifying
Multiple-Field

Keys

Follow these steps to qualify a multiple-field key field with a
qualification value field:

1 Define the call as you normally do, using the Database Record
Selection screen, but do not qualify the call yet.

2 Return to the Database Access Summary screen.

3 On the Database Access Summary screen, enter t(ailoring) next to
the call to display the Database Call Tailoring screen.

4 If the o(btain) action does not display in the Action To Be Tailored
field, enter it now, as shown in Database Call Tailoring Screen for
the Obtain Action.
User’s Guide

164 Chapter 6 Define Database Access

ugpubb.book Page 164 Tuesday, February 19, 2002 9:39 AM
Figure 6-46. Database Call Tailoring Screen for the Obtain Action

5 Enter e(dit) in the Action field next to the control point named
Before DB Access. The Specification Editor displays so that you can
write the qualification value field logic in a local stub. Online
Express automatically executes the local stub at this control point,
before the call executes. See Defining Custom Program Functions,
for rules on coding local stubs. Alternatively, you can execute a
global stub or invoke a user-defined macro at the control point.

6 Access the Database Qualification screen.

7 Qualify the key field by entering the = operator in the Operator
field, and the group-level qualification value field in the Value field.
In this example, you qualify the key field SALES-KEY with the value
field NEW-SALES-KEY.

Database Calls as Custom Program
Functions
Typically, you define calls that execute when the end user enters a
function code, presses a key. You can define additional calls that you
execute anywhere that you can execute a paragraph, such as at a
control point. For example, you might want to store in a log record the
error messages that end users receive when querying a customer order
record. You first define a call that stores the log record. Then, on the
User’s Guide

Customized Database Calls 165

ugpubb.book Page 165 Tuesday, February 19, 2002 9:39 AM
Database Access Summary screen, you enter *user in the Function field
to indicate that you will execute the call as a paragraph, somewhere in
Online Express, as illustrated in Call 03 in Defining a Call That You
Execute As a Custom Function:

Figure 6-47. Defining a Call That You Execute As a Custom Function

After you define the *user call, Online Express writes it to a paragraph.
You then execute the paragraph anywhere that Online Express allows,
such as at a control point or on the Alternate Functions screen. In the
example above, you would execute the paragraph at the control point
after the screen is read, named POST-SCREEN-READ, on the Control
Points screen. You then would write and execute custom code at the
AFTER DB ACCESS control point on the Database Call Tailoring screen to
move the error messages to the log record.

Follow these steps to write and execute a call in a custom program
function:

1 Define the call as you normally do. On the Database Access
Summary screen, enter *user in the Function field next to the call.

2 View the name of the paragraph to which Online Express writes the
*user call. To do so, enter *user in the Command field. The User
Controlled Database Calls screen displays, showing the APS-
generated paragraph name. You can override the name on this
screen by overtyping it.

3 Perform the paragraph anywhere that Online Express allows.
User’s Guide

166 Chapter 6 Define Database Access

ugpubb.book Page 166 Tuesday, February 19, 2002 9:39 AM
Savekey and Commarea Storage
Purpose of

savekey storage
You use a savekey storage area to store key record values during
program execution. You must define savekey storage if your program
must do any of the following:

• Update records with the U(pdate) and D(elete) program functions

• Obtain records sequentially with the N(ext) program function

• Display repeated record blocks that the end user can scroll with the
F(orward) and B(ackward) functions

Define savekey
storage in screen

definition or
Commarea

You can store savekey data either in:

• The program Commarea, a storage area that Online Express
automatically creates when you indicate so on the Savekey
Definition screen.

• Fields that you define on the program screen.

If you use screen fields to store the savekey data, you define either one
or two savekey fields, depending on your screen design as follows:

• If your screen displays only one occurrence of data at a time, and
the data is updateable, you define one savekey field.

• If your screen displays a scrollable or updateable repeated record
block as well as a single occurrence of data, you define either:

• Two savekey fields: one for the repeated block data and one for
the single occurrence data.

• Or one savekey field for both.

Size of savekey is
automatically

calculated

Online Express automatically calculates the minimum size requirement
for savekey storage, and displays that size on the Savekey Definition
screen. Your savekey size is the total of the key lengths of each
updateable record on your screen, plus a one-byte flag per key.

Commarea also
required to store

data you pass

Another purpose of a Commarea is to store data that your program
passes between programs. If you use the X(CTL), M(SG-SW), or C(all)
functions to pass data between programs, you must specify on the
Savekey Definition screen the size of the largest record that you must
pass. Online Express adds this number of bytes to your Commarea.
User’s Guide

Savekey and Commarea Storage 167

ugpubb.book Page 167 Tuesday, February 19, 2002 9:39 AM
Define a
Commarea

You define a program Commarea simply by specifying its size on the
Savekey Definition screen. Its size should be the number of bytes of the
largest record that you pass between programs. If you also use
Commarea to store your savekey data, Online Express adds its byte
requirements to Commarea if you specify so.

When you define a Commarea to store savekey data, or data that you
pass between programs, or both, Online Express creates the following
storage area in Commarea when you generate the program:

-KYWD- 12-*----20---*----30---*----40---*----50---*--
 SYM2 $PX-CA-COMPUTE-LEN(savekeybytes, sharedbytes)
 CA05 FILLER
 $PX-CA-SETUP

where:

• Savekeybytes is the number of savekey storage bytes that Online
Express calculates for storing record keys when:

• Obtaining records sequentially with the N(ext) program
function

• Displaying repeated record blocks that the end user can scroll
with the F(orward) and B(ackward) functions

• Re-reading repeated record blocks so that the end user can
update and delete them with the M(odify) and E(rase)
functions.

Note: Online Express calculates the number of savekeybytes as
the key length of each updateable record on the screen, plus a
one-byte flag per key. Note the following exception:

• For SQL repeated record blocks that are scrollable, Online
Express calculates savekeybytes as the length of each Order By
column, plus a one-byte flag per key.

• Sharedbytes is the number of bytes that you specify for storing data
that you pass between programs with the X(CTL), M(SG-SW), or
C(all) functions. The number that you specify can be any number of
bytes that you want to pass. Online Express stores the sharedbytes
in the data structure in Commarea named PX-USER-COMMAREA.
User’s Guide

168 Chapter 6 Define Database Access

ugpubb.book Page 168 Tuesday, February 19, 2002 9:39 AM
Defining Savekey Storage and a
Commarea
To define a savekey storage area and a Commarea, follow these steps:

1 Ensure that you have defined all program functions and database
calls for the program.

View storage
requirements

2 Display the Savekey Definition screen by selecting option 7, Savekey
Definition, from the Online Express menu. The screen displays the
savekey storage requirements, in number of bytes, as shown in
Savekey Definition Screen. If you want to define savekey fields,
write down these requirements so you will know how large to
define your savekey field(s).

Figure 6-48. Savekey Definition Screen

Define savekey
storage in screen

fields

3 To store savekey data in screen fields, first determine whether to
define one or two savekey fields, as follows:

• If your screen updates only one occurrence of data at a time, or
your program must execute the N(ext) function, define just one
savekey field.

• If your screen displays an updateable repeated record block as
well as a single occurrence of data, define either:

• Two savekey fields: one for the repeated block and one for
the single occurrence.

• Or one savekey field for both.
User’s Guide

Savekey and Commarea Storage 169

ugpubb.book Page 169 Tuesday, February 19, 2002 9:39 AM
4 Define your savekey field(s) in your screen definition, using the APS
Screen Painter. Set their Length and Type attributes as follows:

5 Redisplay the Savekey Definition screen and enter the savekey field
name(s) in the Screen Field field.

Define savekey
storage in the

Commarea

6 To store savekey data in the program Commarea, enter y(es) in the
field, Use Commarea for Savekey Storage Requirements.

7 To define storage in the Commarea for receiving data that another
program passes, enter a number of bytes in the field, Additional
Commarea Bytes Requested.

Special Considerations

Define a global
Commarea

• To ensure that your Commarea can accommodate both the program
key and the largest amount of data that the program can receive
from another program, you can define a global Commarea size that
all programs of the application use as their Commarea size. To do
so, follow these steps:

a Check the Savekey Definition screen of each program to
determine the largest savekey requirement.

b Determine the number of bytes of the largest record that your
program can receive.

c Add these two numbers.

d In a control file or a USERMACS macro, assign the result to the
APS variable named &TP-USER-LEN. Online Express uses the
value of this variable to assign the size of the savekey storage in
Commarea. The format of &TP-USER-LEN is as follows.

&TP-USER-LEN = savekeybytes + sharedbytes

where:

• Savekeybytes is the value of the Savekey Required Bytes for
All Records field.

Attribute Setting

Length The number of bytes specified in the Savekey
Required Bytes field on the Savekey Definition screen

Type P(rotected)
User’s Guide

170 Chapter 6 Define Database Access

ugpubb.book Page 170 Tuesday, February 19, 2002 9:39 AM
• Sharedbytes is the value of the Additional Commarea Bytes
Requested field.

Suppress
generation of

savekey storage
area

• You might want to suppress the generation of the savekey storage
area and savekey logic for a call if you want to:

• Update or delete records that do not have a unique index

• Perform blind update or delete functions

To do so, after you define the call, display the Database Access
Summary screen and enter either *update (for a Modify call) or
*delete (for an Erase call) next to the call in the Function field. For
example, to update and delete a record, you would write two
separate calls--one to obtain and modify the record and one to
obtain and delete the record. You would enter the following values
for each call:

Call Function Field Value Action Field Value

01 *update OM

02 *delete OE
User’s Guide

171

ugpubb.book Page 171 Tuesday, February 19, 2002 9:39 AM
7 Generate the Application

This chapter contains the following sections:

• Concepts of Generation

• Setting Options

• Generating Applications

• Executing Applications

Concepts of Generation
You can generate an entire application or you can generate selected
programs and screens of an application. When you generate an
application, the APS Generator and APS Precompiler translate APS
specifications into a complete structured COBOL application. APS then
passes the source to your COBOL compiler and link edit program to
produce a load module.

Tailor generation You tailor how APS generates an application using options and job
submission modes. Options are available for controlling both the
Generator and Precompiler, as well as target specific options.

When APS generates an application, it:

• Ensures that each component of the application exists.

• Generates screen symbols for each screen for use by the
Precompiler.

• Generates screen source for use by the DC environment.

• Rearranges the specifications programs into proper COBOL
program organization.
User’s Guide

172 Chapter 7 Generate the Application

ugpubb.book Page 172 Tuesday, February 19, 2002 9:39 AM
• Includes externally-defined information that the program
references, such as copylibs and user-defined macros at the
appropriate COBOL program locations.

• Processes all database and data communications calls and user-
defined macros, translating all source to COBOL source.

• Translates all APS Report Writer source to COBOL source.

• Writes a temporary error message file and merges it with the
COBOL compiler error message file. The combined error message
file presents messages sorted by program line number with both
types of messages appearing where appropriate.

APS stores generated and precompiled COBOL program source and
screen output in the following data sets in your user Project and Group,
depending on the DC target specified:

Setting Options
Define

development
environment

Before you generate an application, you must set options to define the
development environment appropriately. You set options for:

• Project and Group

• APS Generator

• APS Precompiler

• IDMS

• SQL Bind and Translate

DC Target
Generated Screen, Mapset
Output File

Generated Program
Output File

CICS GENBMS COBCIC

IMS GENMFS COBIMS

ISPF Dialog GENDLG
GEN5DLG (Mod 5)

COBDLG

ISPF prototype GENPANEL
GEN5PANL(Mod 5)

COBISPF

MVS (batch) Not applicable COBMVS
User’s Guide

Setting Options 173

ugpubb.book Page 173 Tuesday, February 19, 2002 9:39 AM
APS sets option default values for these options according to your
installation configuration.

To access the APS Options menu, from the APS Main Menu enter option
0 in the Command field. Alternatively, from any APS screen, enter opt in
the Command field.

Figure 7-1. APS Options Menu

Setting Project and Group Options

Specify to APS the Project and Group location of your application and
where you want APS to generate the Project and Group DDIFILE data
set. If you use the APS Data Element Facility or the APS/ENDEVOR
interface, specify their locations as well. To do so, follow these steps:

1 Access the Project Group Environment screen. To do so, from the
APS Options Menu, enter option 2 in the Option field. Alternatively,
from any APS screen enter opt 2 in the Command field. The Project
Group Environment screen displays.

2 Complete the fields on the Project Group Environment screen as
follows:

Field Description

Project The name of the Project. For example, myproj.
Must be 1-8 alphanumeric characters; the first
character must be alphabetic.

Group The name of the Group. For example, mygrp.
Must be 1-8 alphanumeric characters; the first
character must be alphabetic.
User’s Guide

174 Chapter 7 Generate the Application

ugpubb.book Page 174 Tuesday, February 19, 2002 9:39 AM
Setting Generator Options
Set the APS Generator options appropriately for your environment. To
do so, follow these steps:

1 Access the Generator Options screen. To do so, from the APS
Options Menu enter option 2 in the Option field. Alternatively, from
any APS screen enter opt 2 in the Command field. The Generator
Options screen displays.

Figure 7-2. Generator Options Screen

DDIFILE The location of the Project and Group’s DDIFILE
data set; do not specify the name DDIFILE.
Default: The Project and Group path specified
above. For example, myproj.group.

Data Element
Library Prefix

Optional. The location of the Data Element
Facility APSDE data set; do not specify the name
APSDE. For example, apspg.project1.group1. For
information on the Data Element Facility, see
Administrator’s Guide: Chapter 2, "Managing
Data Elements."

Field Description
User’s Guide

Setting Options 175

ugpubb.book Page 175 Tuesday, February 19, 2002 9:39 AM
2 Set options appropriate for your environment as described below.

Option Description and Values

Target OS Operating system.

DC Data communications target. For valid DB/DC
combinations see the "DB/DC Target
Combinations" topic in the APS Reference.

DB Database target. For valid DB/DC
combinations see the "DB/DC Target
Combinations" topic in the APS Reference.

SQL SQL target.

Job Class Specify any job class valid at your site and
known to the APS generators.

Msg Class Site-specific.

Listgen Yes Generates listing of generated code.
See the APS Error Messages manual for
a sample.

No Default.

COBOL Yes Saves generated COBOL program
source in the library or data set
appropriate for your DC target. For the
complete list of libraries and data sets.

No Default.

Object Yes Saves generated object code in
appropriate library.

No Default.

MFS/BMS Yes Saves generated BMS or MFS mapsets
in the GENBMS or GENMFS libraries.

No Default.

GENSRC Yes Saves generated source code in the
GENSRC PDS or data set.

No Default.

User Help Yes Enables generation of APS User Help
Facility source files.

No Default.

Job Dest Site-specific.

CARDIN Member Specify the CNTL library APSDBDC member.
User’s Guide

176 Chapter 7 Generate the Application

ugpubb.book Page 176 Tuesday, February 19, 2002 9:39 AM
Setting Precompiler Options
Set the APS Precompiler options appropriately for your requirements or
preferences. To do so, follow these steps:

Access the
Precompiler

Options screen

1 Access the Precompiler Options screen. To do so, from the APS
Options Menu enter option 3 in the Option field. Alternatively, from
any APS screen enter opt 3 in the Command field. The Precompiler
Options screen displays.

Generate COBOL II Yes Generates COBOL II source code.

No Default.

COBOL Compiler 1 OS/VS COBOL (Generate COBOL II = No)

2 COBOL II

3 COBOL for MVS

CICS Release Specify the CICS release at your site.

IMS Release Specify the IMS release at your site.

SUPRA Yes Passes SUPRA procedural statements
through APS unchanged.

No Processes SUPRA procedural
statements.

APS Parm Overrides the APS Parm field on the
Precompiler Options screen. Displays all
options whose default values you have
overridden in the Precompiler Options screen.
You can temporarily override these values
simply by overtyping them in this field, but
changes made here are not saved; they
remain in effect only until you exit APS.

COBOL Parm Specify parameters or directives for COBOL
compiler. See the COBOL Language Operating
Guide for valid values.

Option Description and Values
User’s Guide

Setting Options 177

ugpubb.book Page 177 Tuesday, February 19, 2002 9:39 AM
Figure 7-3. APS Precompiler Options Screen

2 Set options appropriate for your environment as described below.

Option Description and Values

Apost Overrides Quote.

Yes Default. Lets you use the
apostrophe character to
delimit non-numeric literals in
your input source.

Quote Overrides Apost.

Yes Lets you use the single quote
character to delimit non-
numeric literals in your input
source.

No Default.

SCBtrace Yes Activates the SAGE-TRACE-
FLAG debugging facility.

RWT Yes Default. Generates COBOL
code from APS Report Writer
statements. Specify with
COBOL II compiler.

No Passes Report Writer
statements directly to the
COBOL compiler.
User’s Guide

178 Chapter 7 Generate the Application

ugpubb.book Page 178 Tuesday, February 19, 2002 9:39 AM
Note: For very large Report
Writer programs, enter
rwt=bigrwt in the APS Parm
field on the Generator
Options screen.

Lang Indicates which type of source to process and
which columns to process.

SCB=yes Default. Processes APS
specifications (S-COBOL) in
columns 8-72; the symbol &07
in your code forces a character
into column 7.

COBOL=yes Processes COBOL source in
columns 1-72.

JCL=yes Processes JCL in columns 1-72.
Useful for text-processing JCL
and for controlling columns 1-
6 of S-COBOL

Text=yes Processes any source in
columns 1-80. All columns are
considered text; no sequence
numbers are generated.
Automatically sets
XLATE=FMP. To override
XLATE=FMP, enter
XLATE=value in the APS Parm
field.

Evalmess Yes Generates messages that list
evaluation bracket
resolutions. Usually results in
long listings.

No Default.

Seq Specifies the type of sequence numbers that APS
generates. See also, Genident, Spaceident, Ident.

COBOL=yes Generates COBOL-style
numbers in columns 1-6.

Option Description and Values
User’s Guide

Setting Options 179

ugpubb.book Page 179 Tuesday, February 19, 2002 9:39 AM
Record=yes Generates new numbers in
columns 73-80, incrementing
by 100 for each input record
and by two for each
generated record.

Identifier=yes Generates line numbers in
columns 73-80; columns 73-74
contain 0.

Syntax Specifies which compiler to use.

COBOLII=yes Generate COBOL-II syntax.

S-COBOL=yes Generate S-COBOL syntax.

Emark Generates a three-character string marking error
and warning messages in the message report.

Questions=yes Default. Generates ???.

Dollars=yes Generates $$$.

3-Char String=
 string

Generates the string you
specify.

Genseq Overrides Spaceseq.

Yes Default. Generates sequence
numbers in columns 1-6 for
blank or out-of-sequence lines
of source code and when new
lines are generated.

Spaceseq Overrides Genseq.

Yes Generates spaces in columns
1-6; incompatible with
Lang=Text.

Genident See also, Spaceident, Ident, Seq.

Yes Generates sequence numbers
in columns 73-80 for blank or
out of sequence source code
lines and when new lines are
generated.

Option Description and Values
User’s Guide

180 Chapter 7 Generate the Application

ugpubb.book Page 180 Tuesday, February 19, 2002 9:39 AM
No Default. Generates the last
known contents of columns
73-80 when new lines are
generated and passes
identifiers as they exist in
GENSRC.

Spaceident See also, Genident, Ident, Seq.

Yes Generates spaces in columns
73-80. Incompatible with
Lang=Text.

Main Specifies location of the main input source.

MAININ=yes Default. Reads from file
named by external name
MAININ. Use this default
unless using your own JCL.

Instream=yes Reads source instream with
the JCL that you provide.

Member Name=
 membername

Reads from the PDS or file
name or source statement
library designated by the
external name SCELIB.

Ident See also, Genident, Spaceident, Seq.

Yes Generates the internal
program name in columns 73-
80.

No Default.

FMP Yes Default. Processes APS macros
and user-defined
Customization Facility macros.

No Use only with your own JCL
skeleton.

Source Yes Prints the main input source
program, specified in the
MAIN option, after the
message report.

No Default.

Option Description and Values
User’s Guide

Setting Options 181

ugpubb.book Page 181 Tuesday, February 19, 2002 9:39 AM
Setting SQL Bind and Translate Options
Specify Bind and Translate options. To do so, follow these steps:

1 Access the SQL Bind and Translate Options screen. To do so, from the
APS Options Menu enter option 5 in the Command field.
Alternatively, from any APS screen enter opt 5 in the Command or
Option field. The APS Bind Options screen displays.

Gendirect Yes Allows generatation of nested
IF statements in the COBOL
source.

Gencomment Yes Generates replaced source
statements as comments in
the COBOL source.

No Default.

Usernames Yes Generates the following
prefix for APS-generated
paragraphs: paraname-

No Default. Generates the
following prefix for APS
generated paragraphs: G--

Note: To generate any other
prefix, enter the following in
the APS Parm field on this
screen: usernames=prefix

APS Parm Displays all Precompiler options whose default
values you override. These values also display in
the APS Parm field on the Generator Options
screen. APS saves the values you change on the
APS Parm field on the Precompiler Option screen.
APS does not save values that you change in the
APS Parm field on the Generator Options screen.

Option Description and Values
User’s Guide

182 Chapter 7 Generate the Application

ugpubb.book Page 182 Tuesday, February 19, 2002 9:39 AM
Figure 7-4. DB2 Bind Options Screen

2 Select Bind and translate options appropriate for your environment
as described below.

Field Description and Values

DB2 System Name Specify the appropriate name for your
site. Default: DB2.

Plan Name Specify the plan name you use when
you Bind an application. If you leave
this field blank, the default depends
upon your use of the BIND command in
the Application Painter.

Owner of Plan (Authid) Leave this field blank or specify a
primary or secondary authorization ID
of the BIND.

Qualifier Leave this field blank or specify the
implicit qualifier for the unqualified
table names, views, indexes, and aliases
contained in the plan.

Action Specify the bind action to be executed.
Valid values: add or replace.

Retain Execution
Authority

Specify Yes if you specified REPLACE in
the BIND ACTION field. Otherwise
specify No.

Isolation Level Valid values: rr or cs.

Plan Validation Time Valid values: run or bind.
User’s Guide

Setting Options 183

ugpubb.book Page 183 Tuesday, February 19, 2002 9:39 AM
Explain Path Selection Yes Activates the DB2 EXPLAIN
function.

No Does not activate the function.

Resource Acquisition
Time

Valid values: use or allocate. If you
enter ALLOCATE, you must enter
DEALLOCATE in the Resource Release
Time field.

Resource Release Time Valid values: commit or deallocate. The
value you enter in this field depends on
the value you entered in the Resource
Acquisition Time field.

Defer Prepare Yes Generates the keyword
DEFER(PREPARE), which defers
the prepare statement referring
to a remote object.

No Default.

Cache Size Specify the size (in bytes) of the
authorization cache to be acquired in
the EDMPOOL for the plan. Valid
values: 0 to 4096.

Data Currency Yes Data currency is required for
ambiguous cursors.

No Data currency is not required for
ambiguous cursors.

Current Server Leave this field blank or specify a
connection to a location before the
plan runs.

Message Flag Specify which messages display. Valid
values: I, W, E, C, or blank.

Field Description and Values
User’s Guide

184 Chapter 7 Generate the Application

ugpubb.book Page 184 Tuesday, February 19, 2002 9:39 AM
Setting Job Control Cards

You can create up to five job cards - named J1 through J5 - with varying
job names, account information, classes, and other attributes. To do so,
follow these steps:

1 Access the Job Control Cards screen. To do so, from the APS Options
Menu enter option 6 in the Option field. Alternatively, from any APS
screen enter opt 6 in the Command or Option field. The Job Control
Cards screen displays.

2 Modify the cards as desired.

Setting IDMS Options
Specify IDMS options as follows:

1 Access the IDMS Options screen. To do so, from the APS Options
Menu enter option 7 in the Option field. Alternatively, from any APS
screen enter opt 7 in the Command or Option field. The IDMS
Options screen displays.

2 Specify IDMS options appropriate for your environment as described
below.

Option Description and Values

Dictionary Name Specify the dictionary name.

Central Version or Local Specify the compile environment. APS
generates a SYSTRNL with a unique
DSN whose high level qualifier is your
user ID.

cv Default. Central Version.

local When you specify local, also
enter a volume in the IDMS
Local Jrnl Disk Vol field.

dummy When you specify dummy,
APS generates a SYSTRNL
DD DUMMY

IDMS Local Jrnl Disk Vol Local compile disk volume for journal.
User’s Guide

Setting Options 185

ugpubb.book Page 185 Tuesday, February 19, 2002 9:39 AM
Dictionary Update Yes Log program compile
information to the
dictionary.

No Default. Do not log
program compile
information.

IDMS DMLC Output to PDS Yes Write DMLC compile
statements to a PDS. If you
enter yes, you must allocate
a &DSN..IDMSOUT PDS
prior to compilation.

No Default. Do not write DMLC
compile statements to a
PDS.

IDMS Loadlib Qualifier Specify full qualifiers for
IDMS..LOADLIB.

IDMS SYSCTL DSN Optional. Specify DSN of IDMS
dictionary.

CV Node Name Specify name of central version DDS
(Distributed Database System) node
under which loadlib program is
compiled.

DMLIST (List Generation) Yes Generate list.

No Default.

Generate DB-BIND in Pgm Yes Do not suppress the
generation of the DB-BIND
macro.

No Suppress the generation of
the DB-BIND macro. You
must manually code the
DB-BIND macro in your
program.

IDMS Password N/A

IDMS 12.0 SYSIDMS DSN Specify the name of the IDMS 12.0
dataset.

Include IDMSLIB Specify the appropriate dataset name
for CICS, MVS or other environments.

Option Description and Values
User’s Guide

186 Chapter 7 Generate the Application

ugpubb.book Page 186 Tuesday, February 19, 2002 9:39 AM
Resetting Profile Variables

You can reset the profile variables of a Project and Group to their
original installation values. For information on original installation
values, see the Installation Guide chapter Installing APS for z/OS.

This option automatically resets all of the following types of profile
variables:

• All APS Profiles Variables

• All APS library prefixes and DSNs

• Generator Options screen options

• IDMS Options screen options

• Job Control Cards screen options

• Precompiler Options screen options

• DB2 Bind options

Reset all of the above options as follows:

1 Access the APS Options menu. To do so, from the APS Main Menu
enter option 0 in the Command field. Alternatively, from any APS
screen, enter opt in the Command or Option field. The APS Options
menu displays.

2 Select option 0. APS immediately resets the options and displays a
message informing you that the profile pool has been reset.

Generating Applications
You can generate your entire application all at once or you can
generate selected programs and screens individually. To do so, follow
these steps:

Ensure that your
last session ended

normally

1 Ensure that you exited your previous APS session normally; if you
exited abnormally and then submit a generation job, the job will
fail. In this case, exit APS normally, re-start APS, and resubmit the
job.
User’s Guide

Generating Applications 187

ugpubb.book Page 187 Tuesday, February 19, 2002 9:39 AM
Set generation
options

2 Ensure that your generation options are set appropriately, as
described in Setting Generator Options.

3 Display the Application Painter and enter ap in the Type field and
the application name in the Member field.

Generate
application

4 To generate your entire application, enter gen in the Command
field.

Generate
programs or

screens
individually

5 Alternatively, to generate one or more programs or screens
individually, enter g next to those program or screen names, as
shown in Generating Programs and Screens Individually. To
generate all screens, enter generate sc all in the Command field, or
enter g next to all screens; to generate all programs, enter generate
pg all in the Command field, or enter g next to all programs.

Figure 7-5. Generating Programs and Screens Individually

Check job results 6 Check the result of the jobs in SDSF by selecting Services Job Queue.

Special Considerations
Override BMS

mapset names
• In addition to generating APS screen symbols, APS generates a BMS

mapset for each CICS screen, and assigns a default name to each
mapset. To override a BMS mapset name, see Paint Character
Screens.
User’s Guide

188 Chapter 7 Generate the Application

ugpubb.book Page 188 Tuesday, February 19, 2002 9:39 AM
• Generate BMS multiple-map mapsets in APS
To generate a BMS multiple-map mapset that includes some or all
screens of your application, do one of the following:

• To include all screens in a multiple-map mapset, enter gen ms
mapsetname in the Command field. This name overrides each
screen’s default mapset name, which is displayed on the Screen
Generation Parameters screen. For more information on default
mapset names, see Setting Parameters for Generation.

• To include selected screens in a multiple-map mapset, use the
APS BMS Multiple-Map Mapset screen to specify the screens and
generate the mapset. To display this screen, select option 4,
Utilities from the APS Main Menu, and then select option 1,
Non-Painted APSSRC/GENSRC Compilation. The APS Precompiler
screen displays. On it, select option 3, Generate BMS Multiple-
Map Mapset.

Important: After you generate a multiple-map mapset using APS,
you must compile, link, and generate the BMS source in your CICS
environment.

Executing Applications
Run from APS The APS Prototype Execution facility allows you to execute and test

applications. This facility provides 2 environments (IMS and CICS)in
which you can debug and execute an application and test all data
communication and database functions.

Execute CICS and
IMS applications

You can execute CICS and IMS DC applications using the APS Prototype
Execution facility, which emulates the basic functions of the mainframe
CICS and IMS environments. To use this facility, you must specify the DC
target ISPF when you generate your application. Using this facility, you
can test all data communication and database functions and access all
database environments except IMS.
User’s Guide

Executing Applications 189

ugpubb.book Page 189 Tuesday, February 19, 2002 9:39 AM
Use the following execution facilities to execute fully functional
applications that access your databases:

To execute and test your application using the APS Prototype Execution
Facility, follow these steps:

Access the execution facilities
1 From the APS Main Menu, enter option 3 in the Command field. The

APS Prototype Execution screen displays.

Figure 7-6. APS Prototype Execution Screen

2 Select the appropriate option to display your program or
application, and execute it.

Application APS for z/OS Execution Facility

CICS APS Prototype Execution (DC target = ISPF)

IMS DC APS Prototype Execution (DC target = ISPF)

MVS (batch) N/A

ISPF Dialog N/A
User’s Guide

190 Chapter 7 Generate the Application

ugpubb.book Page 190 Tuesday, February 19, 2002 9:39 AM
User’s Guide

191

ugpubb.book Page 191 Tuesday, February 19, 2002 9:39 AM
8 Create User Help

This chapter contains the following sections:

• User Help Facility Concepts

• Defining the Help Database

• Working with the Help Source File

• Generating the User Help Application

• Loading the Help Database

• Customizing the User Help Application

• Maintaining the Help Database

User Help Facility Concepts
Intergrate help

logic
The APS User Help Facility allows you to integrate logic into character
applications to display help information. To implement user help,
compile and generate the APS provided help application and recompile
your user application. Three programs comprise the user help
application, APSUHELP, one of which becomes part of your user
application. If desired, you can customize the help application to
conform to programming conventions at your site. To customize
APSUHELP, you change the default values of the variables stored in the
APHLPIN control file. For detailed information regarding
customization, see Customizing the User Help Application.

Transfer control
to help

application

When a user requests help, the application program transfers control
to the help application program responsible for displaying help
information. APS saves the current user application screen in the help
database or in temporary storage. When your user application
program transfers control to the help display program, it passes
information regarding the type of help information requested. The
help display program reads the help database and displays the
information to the user. When control is returned to your application
User’s Guide

192 Chapter 8 Create User Help

ugpubb.book Page 192 Tuesday, February 19, 2002 9:39 AM
program, the help database or temporary storage area is read again to
restore the current screen.

Since the help display program is part of your user application, you must
compile it in a manner that is consistent with the other programs in
your application. That is, you compile it for the appropriate DC target
and if your applications use a COMMAREA or a SPA, then the help
display program must also have a COMMAREA or SPA of the same
length.

To create help for your applications, you:

• Define the help database.

• Create the help source file.

• Generate the APSUHELP application.

• Load the help database.

Create four types
of user help

The APS User Help Facility lets you create user help for your user
applications. With this facility, you can create the following types of
help:

• Application help describes the user application and its main screen
options.

• Screen help describes a screen and its options.

• Field help describes the field where the cursor is positioned.

• Field value help displays a list of valid values that end users can
select.

You create a help source file to store the help text for one or more user
applications. You load the help source file into the help database. Once
the help source file is loaded into the help database, you or your end
users can add, modify, or delete any help text in the help database.

Defining the Help Database
Define help for

multiple DB
targets

You can define help databases for IMS, VSAM, and SQL. Each database is
described below. If required, you can change the default help database
User’s Guide

Defining the Help Database 193

ugpubb.book Page 193 Tuesday, February 19, 2002 9:39 AM
names to conform to your site’s naming conventions. For more
information, see Customizing the User Help Application.

The primary key for these databases is 42 bytes. It is structured as
follows:

Defining an IMS Help Database
Define an IMS database for user help, as follows:

1 Generate the help database description (DBDGEN) for HELPDBD. To
do so, enter 2 in the Command field. From the Dictionary Services
screen, enter 1 in the Command field. From the Importer Facilities
screen, enter 2 in the Command field.

2 On the IMS screen, type the DBDSRC member name, helpdbd, in the
Member field and enter 1 in the Command field. Note: You must
create JCL to define the VSAM space for the help database specific
to your site.

IMS A two-level database. The access method used is HDAM. The
default database name is HELPDBD. Its parent segment
name is HELPSEG and its child segment name LINESEG.

VSAM A KSDS variable length file. Its maximum length is 3771
bytes: its minimum length is 121 bytes. The default database
name is HELPVSM.

SQL One variable length table. Refer to the SQL description in
the SQLDDL datasets, HELPDB2 (DB2), for more details.

Byte Value

1 Entity Type where:

A=Application
S=Screen
D=Field
V=Field value

2-39 Application name
Screen name
Screen + field name

40-42 000 or context number (global fields)
User’s Guide

194 Chapter 8 Create User Help

ugpubb.book Page 194 Tuesday, February 19, 2002 9:39 AM
3 Generate the help program specification blocks (PSBGEN). There are
two PSBSRC members, HELPPSBL and HELPPSB. To do so, enter 2 in
the Command field. From the Dictionary Services screen, enter 1 in
the Command field. From the Importer Facilities screen, enter 2 in
the Command field

4 On the IMS screen, type the PSB member name, in the Member field
and enter 2 in the Command field.

5 Zeroload or initialize the help database.

6 Optionally, regenerate DDI symbols. To determine if you must
perform this step, see Special Considerations.

Defining a VSAM Help Database
Define a VSAM database for user help as follows:

1 Generate IDCAMS control statements. To do so, enter option 2,
Dictionary Services in the Command field on the APS Main Menu.
Enter option 1, Import Facilities in the Command field on the
Dictionary Services screen. Enter option 3, VSAM on the Import
Facilities screen.

2 Type option 2, Generate IDCAMS (VSAM) Input into AMSERV on the
VSAM Importer screen and type helpvsm in the Member field and
press Enter.

3 Zeroload the help database.

4 Optionally, regenerate DDI symbols. To determine if you must
perform this step, see Special Considerations. To regenerate DDI
symbols, enter option 2, Dictionary Services in the Command field
on the APS Main Menu. Enter option 1, Import Facilities in the
Command field on the Dictionary Services screen. Enter option 3,
VSAM on the Import Facilities screen. Type option 3, Generate
DDISYMB Symbols from DDIFILE on the VSAM Importer screen and
type helpvsm in the Member field and press Enter.
User’s Guide

Defining the Help Database 195

ugpubb.book Page 195 Tuesday, February 19, 2002 9:39 AM
Defining SQL Help Databases

Define an SQL database for user help as follows:

1 Create the help database using the SQL statements in the SQLDDL
dataset, HELPDB2 (HELPDB2). For example:

CREATE TABLE HELPXDB
 (H_PRIME_KEY CHAR (42) NOT NULL,
 (H_BUSINESS_NAME CHAR (55),
 (H_CONTEXT_NAME CHAR (8),
 (H_LST_UPD_DATE DECIMAL (7) NOT NULL,
 (H_LST_UPD_TIME DECIMAL (9) NOT NULL,
 (H_LINE_COUNT DECIMAL (3) NOT NULL,
 (H_LINE_TBL_AREA VARCHAR(3802));

2 To optimize performance, create an index on column H_PRIME_KEY.

3 Set the Target option on the APS Generator Options screen to
specify the SQL database target. Valid options are SQLDS, DB2 and
SQL400.

4 Optionally, regenerate DDI symbols. To determine if you must
perform this step, see "Special Considerations" below.

Special Considerations
• If your application database is the same type as your help database,

it is not necessary to regenerate the user application program’s DDI
symbols. However, if the database types are different, you must
include the description for the help database in your DDI input and
regenerate.

• If you must generate DDI symbols, ensure that variable &HELP-
SUBSCHEMA-ADD=no in the APHLPIN control file. If you do not,
then &HELP-SUBSCHEMA-ADD =yes. Use the table below to help
you determine when you must regenerate DDI symbols.

Application Database Help Database Regenerate DDI

VSAM VSAM No

VSAM SQL No

VSAM DLI No

VSAM/Other VSAM Yes
User’s Guide

196 Chapter 8 Create User Help

ugpubb.book Page 196 Tuesday, February 19, 2002 9:39 AM
Working with the Help Source File
Use any of the following User Help source utilities to create your help
source file. Before executing these utilities, ensure that your help
database has been defined and created and that the help application,
APSUHELP, has been generated. In addition, before you create the help
source, ensure that your user application and screens have been
created.

VSAM/Other SQL No

VSAM/Other DLI Yes

IMS IMS No

IMS SQL No

IMS/Other IMS Yes

IMS/Other SQL No

SQL SQL No

SQL VSAM Yes

SQL DLI No

SQL/Other SQL No

SQL/Other VSAM Yes

SQL/Other DLI Yes

Application Database Help Database Regenerate DDI

Applications Utility Lets you create a complete help application in
one session. If your user application contains
global data elements, you must also use the
Data Elements Utility.

Screens Utility Lets you create help for individual screens, as
well as field help, field value selection lists, and
messages.

Data Elements Utility Lets you create help for global fields that
reside in the APS Data Element Facility.
User’s Guide

Working with the Help Source File 197

ugpubb.book Page 197 Tuesday, February 19, 2002 9:39 AM
The help source file you create is an ASCII text file. The help source file
layout is as follows:

Byte Value Description

1-3 001
002
003

First header record
Second header record
Text records
(optional)

4 D
V
A
S

Field description
Field value
Application
description
Screen description

5-42 screenname +
fieldname
application name
screenname

43-45 000
001

Text description
Text value

First header record

46-53
54-59
60-67
68-121

Context name
Date created
Time created
Blank

Second header record

46-100
101-121

Business name
Blank

A descriptive name
that easily identifies
the user application
and its components.

Text record

46-48
49-121

Numeric counter
description or value
User’s Guide

198 Chapter 8 Create User Help

ugpubb.book Page 198 Tuesday, February 19, 2002 9:39 AM
Creating the Help Source File

To create the help source file, follow the steps below.

1 From the APS Main Menu, enter option 2 in the Command field.
Then enter option 6 in the Command field. APS displays the User
Help Facility screen.

Figure 8-1. User Help Facility Screen

2 From the User Help Facility screen, enter 1 in the Command field.
APS displays the User Help Source Utility screen.

Figure 8-2. User Help Source Utility Screen

3 From the User Help Source Utility screen, select a utility to create
your help source file.

• If you select , Applications, APS displays the Applications Utility
screen.
User’s Guide

Working with the Help Source File 199

ugpubb.book Page 199 Tuesday, February 19, 2002 9:39 AM
Figure 8-3. Applications Utility Screen

• If you select Data Elements, APS displays the Data Elements
Utility screen.

Figure 8-4. APS User Help Data Elements Utility Screen

• If you select Screens, APS displays the Screens Utility screen.
User’s Guide

200 Chapter 8 Create User Help

ugpubb.book Page 200 Tuesday, February 19, 2002 9:39 AM
Figure 8-5. APS User Help Screens Utility Screen

4 Complete the fields for the utility selected as follows:

Field Screen Description

Context Name Data
Elements

Type the context name
associated with the field to
display all the fields with that
context. Leave this field blank
to display the fields with no
context. Type all to display all
the fields with their contexts.
Select a name from the
selection list by entering s next
to it.

Context List Data
Elements

No Do not create a context
list.

Yes Create a context list.

Application Name Applications Enter the user application
name, or leave this field blank
and press Enter to display a
selection list. Select a name
from the selection list by
entering s next to it.
User’s Guide

Working with the Help Source File 201

ugpubb.book Page 201 Tuesday, February 19, 2002 9:39 AM
Field Name Data
Elements

Enter the field name or leave
this field blank and press Enter
to display a selection list. Select
a name from the selection list
by entering s next to it.

Screen Name Screens Enter the screen name, or
leave this field blank and press
Enter to display a selection list.
Select a name from the
selection list by entering s next
to it.

Edit Business Name All A business name is a
descriptive name that easily
identifies the user application
and its components.

No Business name defaults
to the user application
name.

Yes Assign a business name.

Edit text All No Do not create help text.

Yes Create help text.

Include Screens Applications No Do not create screen
help.

Yes Create screen help.

Include Fields Applications No Do not create field help.

Yes Create field help.

Local Fields Applications
and Screens

No Do not create local field
help.

Yes Create field help.

Create Values All No Do not create field
value help.

Yes Create field value help.

Help Source File
Name

All Help source filename, APSEXT.
If this file already exists, it is
overlaid..

Field Screen Description
User’s Guide

202 Chapter 8 Create User Help

ugpubb.book Page 202 Tuesday, February 19, 2002 9:39 AM
5 After completing all fields for the user application components that
you want to create help for, press Enter. The APS User Help Facility
extracts the names of the user application screens and local fields to
create the help source file.

6 If you entered Yes in the Edit Business Name field, APS displays the
Edit Business Name screen. Enter a business name with a maximum
of 55 characters and press PF3.

Create help text 7 If you entered Yes in the Edit text field, APS displays the Help Text
Edit screen. You can enter up to 50 lines of help text, 73 characters
per line. Edit text using ISPF line commands. If you are creating a
field value selection list, enter one value per line. If your end users
will create the help text, press PF3 to leave this screen blank.

Figure 8-6. Edit Business Name Screen

Figure 8-7. Help Text Edit Screen
User’s Guide

Generating the User Help Application 203

ugpubb.book Page 203 Tuesday, February 19, 2002 9:39 AM
Special Consideration

APS converts text entered on the Help Text Edit window to upper case
when you save or press Enter.

Generating the User Help Application
Verify APSUHELP

application
Before you generate help for your user application, ensure that your
project.group data sets contain the APSUHELP application software
described below.

Data set Module Description

APSAPPL APSUHELP APSUHELP application

APSPROG A1UHUPD
APSDISP
APSFM

APSUHELP application programs

APSSCRN APDI
APSFM

APSDISP program screen
APSFM program screen

APSREPT A1UHUPD Report layout for load program

APSDATA HMCOMM Data structure used by APSFM

COPYLIB

HELPCOPY
HELPDB2
HELPROOT
HELPLINE
A1UHFILE

Copylib members for:

VSAM help database
DB2 help database
IMS help database
IMS help database
Batch load program

Note: Ensure that there are no naming
conflicts with these copylib members
and existing copylib members at your
site.

DDISRC HELPVSM
HELPDBD

VSAM database description
IMS database description

SQLDDL HELPDB2 DB2 database description

DBDSRC HELPDBD IMS help database description
User’s Guide

204 Chapter 8 Create User Help

ugpubb.book Page 204 Tuesday, February 19, 2002 9:39 AM
Implement user
help

You incorporate the help you create into the user application through
an APS-provided application, APSUHELP. This application contains three
programs that interface with your user application to make help
available. Do not modify these programs. If you modify these programs,
you must retrofit your modifications to subsequent releases of this
product. The APSUHELP programs are described below.

Generating User Help in CICS/ISPF
Environments
1 Compile A1UHUPD. Ensure that you have typed yes in the User Help

field on the Generator Options screen and that the SUBR option on
the APS Precompiler Options screen is set to no. To compile, access
the Application Painter screen and type vsam in DB field and ispf in
the DC field.

2 Generate the APDI screen. To compile, access the Application
Painter screen and type vsam in DB field and ispf or cics in the DC
field.

3 Generate the APSFM screen. To compile, access the Application
Painter screen and type vsam in DB field and ispf or cics in the DC
field.

PSBSRC HELPPSBL

HELPPSB

IMS PSB for A1UHUPD program

IMS PSB for APSDISP and APSFM
program

Data set Module Description

Program Type Description

A1UHUPD Batch Loads the help source file into the Help
database.

APSDISP Online Displays the contents of the help source
file. When users request help, control is
transferred from your application to this
program.

APSFM Online Allows you to interactively maintain the
help database.
User’s Guide

Generating the User Help Application 205

ugpubb.book Page 205 Tuesday, February 19, 2002 9:39 AM
4 Compile APSDISP. Ensure that you have typed yes in the User Help
field on the Generator Options screen. To compile, access the
Application Painter screen and type vsam in DB field and ispf or cics
in the DC field.

5 Compile APSFM. Ensure that you have typed yes in the User Help
field on the Generator Options screen. To compile, access the
Application Painter screen and type vsam in DB field and ispf or cics
in the DC field.

6 Recompile your application. Ensure that you have typed yes in the
User Help field on the Generator Options screen.

Generating User Help in an IMS
Environment
1 Compile A1UHUPD. Ensure that you have typed yes in the User Help

field on the Generator Options screen and that the SUBR option on
the APS Precompiler Options screen is set to no. To compile, access
the Application Painter screen and type ims in the DC and DB fields.

2 Generate the APDI screen. To do so, access the Application Painter
screen and type ims in the DC and DB fields.

3 Generate the APSFM screen. To compile, access the Application
Painter screen and type ims in the DC field and the DB field.

4 Compile APSDISP. Ensure that you have typed yes in the User Help
field on the Generator Options screen. This program must be
defined to IMS with the PSB, HELPPSB. If your application is
conversational, then APSDISP must be conversational as well. Set
&TP-USER-LEN the same as your application program.

5 Ensure that each program of your user application for which you
want to create help contains a modifiable alternate I/O PCB and
that the PCB for the help database is included in each user
application program PSB.

6 Compile APSFM. To compile, access the Application Painter screen
and type ims in DB field and ims in the DC field.

7 Recompile your application for user help. Ensure that you have
typed yes in the User Help field on the Generator Options screen.
User’s Guide

206 Chapter 8 Create User Help

ugpubb.book Page 206 Tuesday, February 19, 2002 9:39 AM
Note: User help does not work for user applications that use $TP-
SCRNLIST to read multiple screens.

Special Considerations
• When application programs transfer control to APSDISP and returns,

your application program is PROGRAM-INVOKED from APSDISP. If
you code logic for the PROGRAM-INVOKED paragraph, ensure that
control is returned to the appropriate application program.

• In an IMS environment, user help does not work for user
applications that use $TP-SCRNLIST to read multiple screens.

• APSDISP must be defined to IMS with the PSB, HELPPSB. If your
application is conversational, then APSDISP must be conversational
as well. If the size of &TP-USER-LEN varies from program to
program, set the size of &TP-USER-LEN to the largest value.

Loading the Help Database
When you update the help database, you store the help source file you
created.

Loading Help Source for VSAM
If your user application target is VSAM, perform the following steps:

1 Execute A1UHUPD to update the help database. Enter 2 in the
Command field. From the Dictionary Services screen, enter 6 in the
Command field. From the User Help Facility screen, enter 2 in the
Command field. A1UHUPD displays the Update Database Utility
screen where you provide parameters to execute this program.
User’s Guide

Loading the Help Database 207

ugpubb.book Page 207 Tuesday, February 19, 2002 9:39 AM
Figure 8-8. APS User Help Update Database Utility Screen

2 Complete the fields on the Update Database Utility screen as
follows:

• To store help text that has been changed during a specific time
frame, enter values in the Date and Time fields. To store help
text for all user application components, leave these fields
blank.

• In the Input Help Source File Name field, specify the name of the
help source file that you want to store in the help database.

• Enter the name of the help database in the User Help Database
Name field.

• Enter vsam in the DB target type field.

• Enter the environment variable, helpvsm, in the Environment
Name field.

• Type 1 in the Option field and press enter to update the help
database.

The APS User Help Facility produces a report that identifies the
updated help components, and stores the report file in the job
queue.
User’s Guide

208 Chapter 8 Create User Help

ugpubb.book Page 208 Tuesday, February 19, 2002 9:39 AM
Loading Help Source for IMS

If your user application target is IMS, perform the following steps:

1 Execute A1UHUPD with the PSB HELPPSBL. Enter 2 in the Command
field. From the Dictionary Services screen, enter 6 in the Command
field. From the User Help Facility screen, enter 2 in the Command
field. A1UHUPD displays the Update Database Utility screen where
you provide parameters to execute this program.

2 Complete the fields as follows:

• To store help text that has been changed during a specific time
frame, enter values in the Date and Time fields. To store help
text for all user application components, leave these fields
blank.

• In the Input Help Source File Name field, specify the name of the
help source file that you want to store in the help database.

• Enter the VSAM file name of the help database in the Name
field.

• Enter dli in the DB target type field. If your DB target is SQL,
enter sql for both SQL and DB2 targets.

• Enter the DDNAME, helpims, in the Environment Name field.

• Type 1 in the Option field and press enter to update the help
database.

Special Considerations
• You cannot load a global field with more than one context. For

example, if a date field is defined to the data element list with
multiple formats, only one format will be loaded in your help
database.

• The User Help Facility does not support the date and time
parameters when you upload to the help database.
User’s Guide

Customizing the User Help Application 209

ugpubb.book Page 209 Tuesday, February 19, 2002 9:39 AM
Customizing the User Help Application
You customize help applications by setting values for the variables in
the User Help Facility control file, APHLPIN. This file resides in the APS
CNTL member. Edit this file to specify or change:

• Program and screen names (if naming conflicts exists)

• Internal and external storage database targets

• Subschema access used by the help database

• Database name and attributes

• Database field names--COBOL or native

• Attribute restoration

• Screen data storage options

• Data field length

• Global screen message field name

• Field help indicator string

• Date format

• PF key designations

• COBOL help invocation conditions

• APS-generated User Help comment suppression

To customize user help, perform the following:

1 Copy and rename APSPRE.APSLIB.APSREL.CNTL(APHLPIN) to
PROJECT.GROUP.CNTL(membername).

2 Edit PROJECT.GROUP.CNTL(membername) to overwrite any
variables set in APHLPIN.

3 Add the following statement to the top of your program:

% INCLUDE USERCNTL(membername)

Note: If you or your administrator has modified the user help control
file since initially generating your user application, you must also
User’s Guide

210 Chapter 8 Create User Help

ugpubb.book Page 210 Tuesday, February 19, 2002 9:39 AM
recompile the A1UHUPD, APSDISP, and APSFM programs of the
APSUHELP application.

Maintaining the Help Database
APS provides an online file maintenance program, APSFM, that allows
you to maintain the help database. When you execute APSFM, you can
add, edit, or delete records stored in your help database. To do so,
follow these steps:

1 In CICS , type apsf. In IMS, type /for apsfmo. In ISPF , you execute
APSFM using the APS execution facilities. From the APS Main Menu,
enter 3 in the Command field. APS displays the Prototype Execution
screen. From this screen, enter 1 in the Command field. From the
Prototype Execution screen, enter 1 in the Command field. Type
apsfm in the program field. APS displays the Help Database
Maintenance screen.

Figure 8-9. Help Database Maintenance Screen
User’s Guide

Maintaining the Help Database 211

ugpubb.book Page 211 Tuesday, February 19, 2002 9:39 AM
Modify or delete
help database

records

2 To modify or delete a help database record, you must specify the
help database record that you want to edit. To do so, type a value
for the following fields as described below:

3 Press PF5. If the record exists, APS displays the existing data in the
remaining fields. Edit the text using the ISPF line command keys
listed on the screen.

4 If you are adding a new help database record, APS displays a
message that the entity was not found. Complete the remaining
fields as described below.

5 Press PF10 to save the help database record, or PF3 to save the
record and exit the program.

Field Description Value

Entity Type Help database record to
process

A = Application
S = Screen
D = Description
V = Value of the
data element

Entity Global Type Specifies if the data
element is global or
local

global
applicationname
screenname

Name Name of the entity dataelementname

Field Description

Business Name Descriptive name of entity

Context Name If data element is global enter a context name
User’s Guide

212 Chapter 8 Create User Help

ugpubb.book Page 212 Tuesday, February 19, 2002 9:39 AM
User’s Guide

213

ugpubb.book Page 213 Tuesday, February 19, 2002 9:39 AM
9 Define Online Programs with
Program Painter

This chapter contains the following sections:

• Concepts of the Program Painter

• Creating Online Programs in the Program Painter

Concepts of the Program Painter
An alternative to

Online Express
The Program Painter offers you a more conventional method for
writing programs than Online Express. Unlike the menu-driven method
of Online Express, the Program Painter method is text-driven, letting
you enter your specifications on a blank screen using its ISPF-like text
editor. Like Online Express, the Program Painter provides a shorthand
method for creating online COBOL and COBOL/2 programs.

Mix online with
batch programs

Your application can consist entirely of online programs, or you can mix
online programs with batch programs in the same application. In
addition, the programs of a single application can access different
database and data communication (DB/DC) targets. For example, your
online programs can use CICS to access SQL databases and VSAM files,
while your batch programs access VSAM files and IMS databases. For all
valid online and batch DB/DC target combinations, see Paint the
Application Definition.

NTRY keyword
generates a

program template

By entering a single APS keyword, NTRY, you can generate a program
template, or shell, that fully defines all parts of your program except
for the procedural code that you supply. The template defines:

• The Identification Division, based on your Application Painter
specifications

• The Environment Division, based on your Application Painter
specifications
User’s Guide

214 Chapter 9 Define Online Programs with Program Painter

ugpubb.book Page 214 Tuesday, February 19, 2002 9:39 AM
• The Data Division, including the following Working-Storage and
Linkage Section structures:

• Your database record or file definitions, based on your imported
subschema

• Your screen field data structures, based on your Screen Painter
specifications

• CICS EIBRCODE and DFHCOMMAREA structures

• Your IMS PCB mask, including I/O and database PCBs, based on
your imported subschema

• An APS data structure for passing data among programs, known
as a Commarea; the Commarea appears in either Working-
Storage or the Linkage Section, depending on your DC target

• PF key definitions, based on your specified DC target

• Flags required by APS

• Portions of the Procedure Division, including:

• A housekeeping routine, to initialize Working-Storage fields,
flags, and counters

• Program invocation logic, to initialize your program when it is
invoked by a transaction ID, a screen, or another program,
based on your specified DC target

• Logic to send the program screen to the end user’s monitor

Add to or modify
the template

You can add to or modify the template as needed. When you do so, you
enter additional APS keywords with your source code to specify the
program location where the source belongs. For example, you can:

• Add Working-Storage or Linkage Section data elements and flags
for your procedural routines.

• Redefine the APS Commarea data structure to accommodate the
data that you pass among programs.

• Add to or modify the default program invocation logic to suit your
program requirements.

• Add calls to user-defined Customization Facility macros, and set any
variable values required by the macros.
User’s Guide

Concepts of the Program Painter 215

ugpubb.book Page 215 Tuesday, February 19, 2002 9:39 AM
Add procedural
source code

To specify procedural logic, you can use any combination of the
following types of source code:

• COBOL or COBOL/2

• APS database and data communications (DB and DC) calls. These
calls provide almost all the functionality offered by your target
environment calls, but are easier to write. The short, simple formats
of the APS calls shield you from much tedious coding--you simply
enter the call name and any keywords and arguments that you
need. APS generates your specifications as complete calls, written in
the syntax native to your DB and DC environments. For a complete
list of calls for all DB and DC targets, see the"Database Calls" and
"Database Communication Calls" topics in the APS Reference.

• APS Structured COBOL (S-COBOL) source code. S-COBOL is an
optional set of COBOL-like procedural structures that are simpler
and more powerful than COBOL or COBOL/2 structures. You can
write S-COBOL statements in conjunction with, or instead of, COBOL
or COBOL/2 statements. For information, see the "S-COBOL
Structures" topic in the APS Reference.

Include external
source code in
your programs

In addition, you can include in your programs externally-defined source
code that further streamlines the process of developing applications.
When you do so, you enter additional APS keywords to specify the
program location where the source code belongs. Applications created
in the Program Painter can use any of the following types of external
source code:

External Source Code Data Set

Global stubs, which are COBOL,
COBOL/2, or S-COBOL
paragraphs that all programs of
your application can share

APSPROG, your APS Project and Group
data set for Program Painter programs
and global stubs. You create stubs
using the Program Painter; APS stores
each stub in a separate file. For
information on writing global stubs,
see the "Stubs" topic in the APS
Reference.

COBOL copybooks containing
data structures
or other source code

COPYLIB, your APS Project and Group
data set for COBOL copybooks.
User’s Guide

216 Chapter 9 Define Online Programs with Program Painter

ugpubb.book Page 216 Tuesday, February 19, 2002 9:39 AM
Columns for
keywords and

source code

You enter all program keywords and source code in the following
columns of the Program Painter screen, depending on which compiler
you use.

Creating Online Programs in the Program
Painter

To create an online program using the Program Painter, follow these
steps.

Create the
application

definition and
screens

1 Create your application definition using the Application Painter, as
described in Paint the Application Definition. Steps 2 and 3 below
describe how to specify your DC and DB targets when creating your
application definition.

Data structures created in the
APS Data
Structure Painter

APSDATA, your APS Project and Group
data set for data structures that you
create using the Data Structure
Painter.

User-defined macros USERMACS, your APS Project and
Group data set for user-defined
Customization Facility macros. For
information on writing user-defined
macros, see the APS Customization
Facility User’s Guide.

External Source Code Data Set

Compiler Keyword Column Range
Source Code Column
Range

OS/VS COBOL 8 through 11 12 through 72

COBOL/2 8 through 11 12 through 80
User’s Guide

Creating Online Programs in the Program Painter 217

ugpubb.book Page 217 Tuesday, February 19, 2002 9:39 AM
2 Specify your DC target on the Application Painter as follows:

3 Specify your database (DB) target in the DB field. For a list of valid
DB/DC combinations for generating executable programs to run on
various operating systems, see the "DB/DC Target Combinations"
topic in the APS Reference.

To target DB/2, leave this field blank or let default to VSAM. Then,
before generating the application, specify db2 in the SQL field on
the Generation Options screen.

If your application accesses multiple database targets, specify a
target as follows:

4 Create your application screens using the Screen Painter, as
described in Paint Character Screens.

Access the
Program Painter

5 On the Application Painter, enter s next to a program name to
display the Program Painter.

If application contains ... Specify this DC target ...

Both online and batch
programs

Your online DC target. To identify the
batch programs, enter *batch in the
Screen field next to each batch
program name and leave the I/O fields
blank.

Only online programs Your online DC target.

If application accesses ... Specify this DB target ...

Two DB targets, including
VSAM

The non-VSAM target, because APS
always gives you access to the VSAM
target.

Two or more DB targets,
not including VSAM

Any of those DB targets. When you
generate the programs, generate just
the programs of your specified DB
target first. Then change the DB target
to the next target and generate just
the programs of that next target. For
example, if your application accesses
both SQL and IMS subschemas,
generate your SQL programs
separately from your IMS programs.
User’s Guide

218 Chapter 9 Define Online Programs with Program Painter

ugpubb.book Page 218 Tuesday, February 19, 2002 9:39 AM
6 Begin entering your program source code. As you do so, specify the
COBOL program locations where the code belongs--such as the
Working-Storage Section or Procedure Division--by entering APS
keywords next to the source code in the KYWD columns, 8 through
11. You can enter your source code and associated keywords in any
sequence; when you generate the program, APS arranges the
source into the proper COBOL program sequence. For example, you
can define Working-Storage fields in the Procedure Division instead
of Working-Storage.

Write Remarks 7 To write Identification Division Remarks text, enter the REM
keyword in the KYWD column, and the text starting in column 12,
on the same line. Continue on as many lines as you need. REM is
invalid for COBOL/2; to write remarks in this environment, use the
comment keyword instead, which is /*. For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*----
 REM Comment text
 continues onto the next line.
-KYWD- 12-*----20---*----30---*----40---*----50---*----
 /* comment text
 continues onto the next line.

Specify Special-
Names

8 To write an Environment Division Special-Names statement, enter
the SPNM keyword in the KYWD column, and the statement
starting in column 12, on the same line.

Define or include
Working-Storage

structures

9 Mark the beginning of your Working-Storage entries by entering
the WS keyword in the KYWD column. Then skip a line and enter
your Working-Storage structures--such as data structures, copylibs,
and DB2 table and cursor declarations--as described in steps 10
through 15.

10 To define in Working-Storage a data structure in COBOL format,
enter the 01 keyword in the KYWD column (columns 8 and 9), and
your 01-level data item starting in column 12. To define elementary
data items, skip a line and enter them starting in column 12, as
shown below. We recommend that you indent each new level of
elementary data items four columns. For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*----
 01 WS-STRUCT-IN-COBOL-FORMAT.
 05 MY-WS-FIELD-1 PIC X(8).
 05 MY-WS-FIELD-2.
 10 MY-WS-FIELD-3 PIC X(8).
 10 MY-WS-FIELD-4 PIC X(3).
User’s Guide

Creating Online Programs in the Program Painter 219

ugpubb.book Page 219 Tuesday, February 19, 2002 9:39 AM
Generated APS source:

 01 WS-STRUCT-IN-COBOL-FORMAT.
 05 MY-WS-FIELD-1 PIC X(8).
 05 MY-WS-FIELD-2.
 10 MY-WS-FIELD-3 PIC X(8).
 10 MY-WS-FIELD-4 PIC X(3).

11 To define in Working-Storage a data structure in Data Structure
Painter format, enter the REC keyword in the KYWD column
(columns 8 through 10), and your 01-level data item starting in
column 12. To define elementary data items, skip a line and enter
them starting in column 16, as shown below. Do not enter the data
item level numbers, such as 01 or 05; APS automatically generates
them based on how you indent the items. We recommend that you
indent each new level of elementary data items four columns. For
example:

-KYWD- 12-*----20---*----30---*----40---*----50---*----
 REC WS-STRUCT-IN-DSPAINTER-FORMAT.
 MY-WS-FIELD-1 X8
 MY-WS-FIELD-2
 MY-WS-FIELD-3 X8
 MY-WS-FIELD-3 X3

Generated APS source:

 01 WS-STRUCT-IN-DSPAINTER-FORMAT.
 05 MY-WS-FIELD-1 PIC X(8).
 05 MY-WS-FIELD-2.
 10 MY-WS-FIELD-3 PIC X(8).
 10 MY-WS-FIELD-4 PIC X(3).

12 To include a copybook in Working-Storage, choose one of the
following methods:

• If you use a COBOL/2 compiler, or if your copybook contains an
indexed table, enter the SYWS keyword in the KYWD column,
and an APS % INCLUDE statement in column 12. For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*--
 SYWS % INCLUDE COPYLIB (MY-COPYBOOK)
User’s Guide

220 Chapter 9 Define Online Programs with Program Painter

ugpubb.book Page 220 Tuesday, February 19, 2002 9:39 AM
• If you use an OS/VS COBOL compiler, and your copybook does
not contain an indexed table, do one of the following:

• Enter the 01 keyword in the KYWD column, and a COBOL
COPY statement in column 12. For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*----
 01 COPY MY-COPYBOOK

• Alternatively, copy the copybook into a Working-Storage
field, as follows:

-KYWD- 12-*----20---*----30---*----40---*----50---*----
 01 WS-COPYBOOK-FLD COPY MY-COPYBOOK

13 To include in Working-Storage an externally-defined data structure
defined in the Data Structure Painter, enter the DS keyword in the
KYWD column, and the data structure name in column 12. For
example:

-KYWD- 12-*----20---*----30---*----40---*----50---*----
 DS DATARECS

14 To define in Working-Storage a DB2 table declaration or one or
more cursor declarations, enter the SQL keyword in the KYWD
column, and the declaration(s) in column 12. For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*----
 SQL DECLARE DSN8.TDEPT TABLE
 ... (DEPTNO CHAR(3) NOT NULL,
 ... DEPTNAME CHAR(36) NOT NULL,
 ... MGRNO CHAR(3) NOT NULL,
 ... ADMRDEPT CHAR(3) NOT NULL)

15 To include a PANVALET record in Working-Storage, enter the ++
keyword in the KYWD column, and the record name in column 12.
For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*----
 ++ PANWSREC

Define or include
Linkage Section

structures

16 Mark the beginning of your Linkage Section entries by entering the
LK keyword in the KYWD column. Skip a line and enter your
User’s Guide

Creating Online Programs in the Program Painter 221

ugpubb.book Page 221 Tuesday, February 19, 2002 9:39 AM
Linkage Section structures in the same manner that you enter
Working-Storage structures.

Note: To include a copybook in the Linkage Section, substitute the
SYWS keyword with the SYLK keyword.

Define the

Commarea TP-
USERAREA field

17 Accept or override the default length of the Commarea field, TP-
USERAREA, and optionally redefine it into multiple fields. Although
APS automatically generates a Commarea for all programs, its
default length and program location vary by DC target, as shown
below.

• To assign a length to TP-USERAREA, enter the variable value
assignment statement, &TP-USER-LEN, in column 12, and the
keyword SYM1 in the KYWD column. SYM1 places the variable
at the top of your program. For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*-
 SYM1 &TP-USER-LEN = 49

Generated APS source:

01 TP-COMMAREA.
 .
 .
 .
 05 TP-USERAREA PIC X(49).

DC Target Default TP-USERAREA
Length

Program Location

CICS 80 Working-Storage

IMS 0 Working-Storage

ISPF 2048 Linkage Section

ISPF Dialog 0 Working-Storage
User’s Guide

222 Chapter 9 Define Online Programs with Program Painter

ugpubb.book Page 222 Tuesday, February 19, 2002 9:39 AM
• To redefine TP-USERAREA, enter a redefinition data structure in
either the Program Painter or Data Structure Painter, using
either of the following keyword/source code combinations.

Keyword Source Code

CA05 Define in the Program Painter a COBOL redefinition data
structure. For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*-
 SYM1 &TP-USER-LEN = 49
 .
 .
 .
 CA05 CA-REDEF.
 10 CA-EMPLOYEE-NAME PIC X(20).
 10 CA-EMPLOYEE-TITLE PIC X(20).
 10 CA-EMPLOYEE-SSN PIC X(09).

Generated APS source:

 01 TP-COMMAREA.
 .
 .
 .
 01 FILLER REDEFINES TP-COMMAREA.
 05 TP-USERAREA PIC X(49).
 05 PGM-USERAREA REDEFINES TP-USERAREA.
 10 CA-EMPLOYEE-NAME PIC X(20).
 10 CA-EMPLOYEE-TITLE PIC X(20).
 10 CA-EMPLOYEE-SSN PIC X(09).

CA Define in the Program Painter a redefinition data structure in
Data Structure Painter format. For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*-
 SYM1 &TP-USER-LEN = 49
 .
 .
 .
 CA PGM-USERAREA
 10 CA-EMPLOYEE-NAME X20
 10 CA-EMPLOYEE-TITLE X20
 10 CA-EMPLOYEE-SSN X09

The generated APS source is identical to the source generated
by the CA05 keyword.
User’s Guide

Creating Online Programs in the Program Painter 223

ugpubb.book Page 223 Tuesday, February 19, 2002 9:39 AM
Begin to define
the Procedure

Division

18 To begin defining the Procedure Division, enter the NTRY keyword
in the KYWD column, and enter its arguments--such as the program
screen--in column 12. NTRY generates logic to initialize your
program when it is invoked, and to send the program’s screen to
the end-user’s monitor, as shown below.

-KYWD- 12-*----20---*----30---*----40---*----50---*----
 NTRY PSINQY

Generated APS source:

003700 $TP-ENTRY ("PSINQY", "")
003710 IF TP-TRANSID-INVOKED
003720 PERFORM APS-TRANSID-INV-PARA
003730 ELSE-IF TP-PROGRAM-INVOKED
003740 PERFORM APS-PROGRAM-INV-PARA
003750 ELSE-IF TP-SCREEN-INVOKED
003760 PERFORM APS-SCREEN-INV-PARA
003770 $TP-SEND ("PSINQY", "")
003780
003790 APS-TRANSID-INV-PARA.
003800 % IF &TP-USER-LEN > 0
003810 MOVE LOW-VALUES TO TP-USERAREA
003820 $SC-CLEAR ("PSINQY")
003830 EJECT
003840 APS-PROGRAM-INV-PARA.
003850 $SC-CLEAR ("PSINQY")
003860 EJECT
003870 APS-SCREEN-INV-PARA.
003880 PERFORM APS-USER-CODE-PARA
003890 EJECT
003900 APS-USER-CODE-PARA.

Enter Procedure
Division source

code

19 On the next line, enter your Procedure Division source code, which
can include the following:

• COBOL, COBOL/2, or S-COBOL statements and paragraphs. To
write any paragraph, enter the PARA keyword in the KYWD
column, your paragraph name in column 12 on the same line,
and your paragraph statements on the following lines. For

CADS Define in the Data Structure Painter a redefinition data
structure in Data Structure Painter format, and include it in the
program using the CADS keyword. For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*-
 CADS PGM-USERAREA

Keyword Source Code
User’s Guide

224 Chapter 9 Define Online Programs with Program Painter

ugpubb.book Page 224 Tuesday, February 19, 2002 9:39 AM
information on writing S-COBOL statements, see the "S-COBOL
Structures" topic in the APS Reference.

• APS database and data communication (DB and DC) calls. For
complete lists of calls for all DB and DC targets, see the
"Database Calls" and "Data Communication Calls" topics in the
APS Reference.

• COBOL, COBOL/2, or S-COBOL global stubs. To include a stub in
the program, enter the STUB keyword in the KYWD column and
your stub name in column 12 on the same line. For information
on writing global stubs, see the "Stubs" topic in the APS
Reference.

• Customization Facility macro calls and other statements. For
information on writing these statements, see the Customization
Facility User’s Guide.

For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*--
 NTRY PSINQY
 /* BEGIN PROCEDURE DIVISION SOURCE CODE
 IF PF12
 SEND PSMENU
 ELSE-IF PF1
 PSUPDT-EMPLOYEE-NO = PSINQY-EMPLOYEE-NO
 PSUPDT-FUNCTION = ’1’
 SEND PSUPDT
 ELSE
 SEND PSINQY
 PERFORM SAMPLE-S-COBOL-PARA
 PERFORM SAMPLE-COBOL-PARA

 PARA SAMPLE-COBOL-PARA.
 [I WILL INSERT SAMPLE COBOL PARA STMTS HERE]
 PARA SAMPLE-S-COBOL-PARA
 [I WILL INSERT SAMPLE S-COBOL PARA STMTS HERE]
 STUB MY-STUB

Generated APS source:

003700 $TP-ENTRY ("PSINQY", "")
003710 IF TP-TRANSID-INVOKED
003720 PERFORM APS-TRANSID-INV-PARA
003730 ELSE-IF TP-PROGRAM-INVOKED
003740 PERFORM APS-PROGRAM-INV-PARA
003750 ELSE-IF TP-SCREEN-INVOKED
User’s Guide

Creating Online Programs in the Program Painter 225

ugpubb.book Page 225 Tuesday, February 19, 2002 9:39 AM
003760 PERFORM APS-SCREEN-INV-PARA
003770 $TP-SEND ("PSINQY", "")
003780
003790 APS-TRANSID-INV-PARA.
003800 % IF &TP-USER-LEN > 0
003810 MOVE LOW-VALUES TO TP-USERAREA
003820 $SC-CLEAR ("PSINQY")
003830 EJECT
003840 APS-PROGRAM-INV-PARA.
003850 $SC-CLEAR ("PSINQY")
003860 EJECT
003870 APS-SCREEN-INV-PARA.
003880 PERFORM APS-USER-CODE-PARA
003890 EJECT
003900 APS-USER-CODE-PARA.
003910 /* BEGIN PROCEDURE DIVISION SOURCE CODE
003920 IF PF12
003930 $TP-SEND PSMENU
003940 ELSE-IF PF1
003950 PSUPDT-EMPLOYEE-NO = PSINQY-EMPLOYEE-NO
003960 PSUPDT-FUNCTION = ’1’
003970 $TP-SEND PSUPDT
003980 ELSE
003990 $TP-SEND PSINQY
004000 PERFORM SAMPLE-COBOL-PARA
004010 PERFORM SAMPLE-S-COBOL-PARA
004020 PERFORM MY-STUB
004030
004040 SAMPLE-COBOL-PARA.
004050 [COBOL PARA STMTS HERE]
004060 SAMPLE S-COBOL-PARA
004070 [COBOL PARA STMTS HERE]
004080 MY-STUB
004090 [SAMPLE STUB STMTS HERE]

Write comments 20 To document your program with comments, use the following
formats in the following program locations. Note that in the
User’s Guide

226 Chapter 9 Define Online Programs with Program Painter

ugpubb.book Page 226 Tuesday, February 19, 2002 9:39 AM
Procedure Division, you can enter comments at the end of a line of
source code.

Enter
Customization
Facility macro

calls and
statements

21 Enter any Customization Facility macro calls or statements that your
program requires. For example, if on the Application Painter you
include a user-defined macro library in your program, call the
macros you need, and assign values to any variables that the macros
require. Use the following keywords to place the calls and
statements in the following program locations:

Program
Location Comment Format

Anywhere -KYWD- 12-*----20---*----30---*----40---*--
 /* comment text
 /* comment text

Procedure
Division

-KYWD- 12-*----20---*----30---*----40---*--
 /* comment text
 program source code /* comment text

Keyword Program Location

SYM1 At the beginning of the program, before macro
libraries that you include at the beginning of the
program

SYM2 After macro libraries that you include at the
beginning of the program

SYEN In the Environment Division, after the Special-Names
paragraph

SYDD At the beginning of the Data Division

SYFD In the File Section, after macro libraries that you
include at the beginning of the File Section

SYWS In the Working-Storage Section, after macro libraries
and data structures that you include in Working-
Storage

SYLT In the Linkage Section, after macro libraries and
data structures that you include at the beginning of
Linkage

SYLK In the Linkage Section, after source code that you
include with the SYLT keyword

SYBT At the end of the program
User’s Guide

Creating Online Programs in the Program Painter 227

ugpubb.book Page 227 Tuesday, February 19, 2002 9:39 AM
For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*----
 SYM1
 /* MACRO VARIABLE TO APPEAR AT BEGINNING OF PROGRAM,
 /* BEFORE MACRO LIBRARY THAT I INCLUDE AT BEGINNING
 /* OF PROGRAM.
 % &MY-SYMBOL = 1234

 SYM2
 /* MACRO VARIABLE TO APPEAR AFTER MACRO LIBRARY THAT
 /* I INCLUDE AT BEGINNING OF PROGRAM.
 % &MY-STRING-SYMB = "THIS IS A STRING"

 SYWS
 /* MACRO VARIABLE TO APPEAR AFTER MACRO LIBRARY THAT
 /* I INCLUDE AT BEGINNING OF WORKING-STORAGE.
 % &MY-WS-SYMBOL = 1234

Validate source
code syntax

22 To validate that your source code contains no Program Painter
syntax errors, enter validate or val in the Command field. APS
displays a message for each syntax error.

Preview the
program as

generated source

23 To preview the program as it will look when generated, enter
convert or conv in the Command field. APS converts the Program
Painter source code to generated APS source code. APS does not
include in the converted source any components defined externally
to the program; APS includes them when you generate the
program. To view the source in Program Painter format again, enter
reset or unconv. Such externally-defined components not included
in this step are:

To view the source in Program Painter format again, enter reset or
unconv.

Component
Project\Group
data set

Screen record descriptions APSSCRN

Database record definitions DDISYMB and
COPYLIB

Data structures included from copylibs COPYLIB

Data structures included from the Data
Structure Painter

APSDATA

User-defined macros USERMACS
User’s Guide

228 Chapter 9 Define Online Programs with Program Painter

ugpubb.book Page 228 Tuesday, February 19, 2002 9:39 AM
24 Exit the Program Painter by pressing PF3 or entering cancel.

Special Considerations
• When modifying your program, do not modify the generated

source code; modify only your Program Painter source code.

• To customize the program template, you can write any custom
source code and execute it at several predefined locations in the
template. To do so, write paragraphs anywhere in the Procedure
Division, using the APS-supplied paragraph names below. APS
automatically performs the paragraphs at the locations specified
below, in the following order:

Paragraph Location Performed

APS-AFTER-RECEIVE-PARA After the program is invoked by any
method, and after all field edits are
executed.

APS-TRANSID-INV-PARA After the program is invoked by a
transaction ID, and after all field edits
are executed.

APS-PROGRAM-INV-PARA After the program is invoked by
another program.

APS-BEFORE-SEND-PARA Before the program sends its screen,
except when the program is invoked
by another program.
User’s Guide

229

ugpubb.book Page 229 Tuesday, February 19, 2002 9:39 AM
10 Create Batch Programs

This chapter contains the following sections:

• Concepts of APS Batch Programming

• Creating Batch Programs

• Sample Batch Program

Concepts of APS Batch Programming
Shorthand

method for
creating programs

You create batch programs using the Program Painter, a tool that
offers a shorthand method for developing applications. To fully define
all divisions of your program except the Procedure Division, you simply
enter APS keywords and their arguments. To help you create the
Procedure Division more quickly, APS lets you write your database calls
in simplified APS formats, saving you many lines of coding. You
complete your Procedure Division by entering COBOL, COBOL/2, or S-
COBOL structures. S-COBOL is an optional set of COBOL-like statements
that simplify procedural coding. You enter all your program source
code--including the APS keywords, database calls, and S-COBOL
structures--on a blank Program Painter screen using its ISPF-like text
editor.

Write reports
using Report

Writer structures

You can also use the Program Painter to create batch report programs
using the APS Report Writer structures. This chapter only discusses
creating batch programs that generate to a flat file. For information
about writing reports, see Create Reports with Report Writer.

Mix batch with
online programs

Your application can consist entirely of batch programs, or you can mix
batch programs with online programs in the same application. In
addition, the programs of a single application can access different
database and data communication (DB/DC) targets. For example, your
batch programs can access VSAM files and IMS databases, while your
online programs use CICS to access VSAM files and SQL databases. For
User’s Guide

230 Chapter 10 Create Batch Programs

ugpubb.book Page 230 Tuesday, February 19, 2002 9:39 AM
all valid batch and online DB/DC target combinations, see Paint the
Application Definition.

Keywords
generate programs

APS builds batch program source code from the following items:

Add procedural
source code

To specify procedural logic, you can use any combination of the
following types of source code.

• COBOL or COBOL/2

• APS database (DB) calls. These calls provide almost all the
functionality offered by your target environment calls, but are
easier to write. The short, simple formats of the APS calls shield you
from much tedious coding--you simply enter the call name and any
keywords and arguments that you need. APS generates your
specifications as complete calls, written in the syntax native to your

Identification Division: Generated by APS, based on your
Application Painter specifications

Environment Division: Generated by APS keywords and
arguments that you enter

Data Division
File Section:

Generated by APS keywords and
arguments that you enter

Data Division
Working-Storage Section:

Database record definitions

IMS database PCB mask

Flags required by APS

Data elements and flags for your
 procedural routines

Generated by:

APS, based on your subschema

APS, based on your subschema

APS

APS keywords and source code
that you enter

Data Division
Linkage Section:

Data elements and flags for your
 procedural routines

Generated by:

APS keywords and source code
that you enter

Procedure Division:

Routines to initialize APS
 Working-Storage flags

Procedural source code

Generated by:

APS

APS keywords, database calls, and
other procedural source code that
you enter
User’s Guide

Concepts of APS Batch Programming 231

ugpubb.book Page 231 Tuesday, February 19, 2002 9:39 AM
DB environment. For a complete list of calls for all DB targets, see
the "About Database Calls" topic in the APS Reference.

• APS Structured COBOL (S-COBOL) source code. S-COBOL is an
optional set of COBOL-like procedural structures that are simpler
and more powerful than COBOL or COBOL/2 structures. You can
write S-COBOL statements in conjunction with, or instead of, COBOL
or COBOL/2 statements. For information, see the "About S-COBOL
Structures" topic in the APS Reference.

Include external
source code in
your programs

In addition, you can include in your programs externally-defined source
code that further streamlines the process of developing applications.
When you do so, you enter additional APS keywords to specify the
program location where the source code belongs. Applications created
in the Program Painter can use any of the following types of external
source code:

External Source Code Data Set

Global stubs, which are COBOL,
COBOL/2, or S-COBOL
paragraphs that all programs of
your application can share

APSPROG, your APS Project and
Group data set for Program Painter
programs and global stubs. You
create stubs using the Program
Painter; APS stores each stub in a
separate file. For information on
writing global stubs, see the "Stubs"
topic in the APS Reference.

COBOL copybooks containing
data structures or other source
code

COPYLIB, your APS Project and Group
data set for COBOL copybooks.

Data structures created in the
APS Data Structure Painter

APSDATA, your APS Project and
Group data set for data structures
that you create using the Data
Structure Painter.

User-defined macros USERMACS, your APS Project and
Group data set for user-defined
Customization Facility macros. For
information on writing user-defined
macros, see the Customization
Facility User’s Guide.
User’s Guide

232 Chapter 10 Create Batch Programs

ugpubb.book Page 232 Tuesday, February 19, 2002 9:39 AM
Columns for
keywords and

source code

You enter all program keywords and source code in the following
columns of the Program Painter screen, depending on which compiler
you use.

Creating Batch Programs
To create a batch program using the Program Painter, follow these
steps:

1 Create your application definition using the Application Painter, as
described in Paint the Application Definition. Steps 2 and 3 below
describe how to specify your DC and DB targets when creating your
application definition.

2 Specify your DC target on the Application Painter as follows:

3 Specify your database (DB) target in the DB field. For a list of valid
DB/DC combinations for generating executable programs to run on
various operating systems, see the "DB/DC Target Combinations"
topic in the APS Reference.

To target DB/2, leave this field blank or let default to VSAM. Then,
before generating the application, specify db2 in the SQL field on
the Generation Options screen.

Compiler Keyword Column Range Source Code Column
Range

OS/VS COBOL 8 through 11 12 through 72

COBOL/2 8 through 11 12 through 80

If application contains ... Specify this DC target ...

Both batch and online
programs

Your online DC target. To identify
the batch programs, enter *batch in
the Screen field next to each batch
program name and leave the I/O
fields blank.

Only batch programs Mvs. Additionally, leave each Screen
field and I/O field blank.
User’s Guide

Creating Batch Programs 233

ugpubb.book Page 233 Tuesday, February 19, 2002 9:39 AM
If your application accesses multiple database targets, specify a
target as follows:

4 On the Application Painter, enter s next to a program name to
display the Program Painter.

5 Begin entering your program source code. As you do so, specify the
COBOL program locations where the code belongs--such as the
Input-Output Section or File Section--by entering APS keywords next
to the source code in the KYWD columns, 8 through 11. You can
enter your source code and associated keywords in any sequence;
when you generate the program, APS arranges the source into the
proper COBOL program sequence. For example, you can define
Working-Storage fields in the Procedure Division instead of
Working-Storage.

Write Remarks 6 To write Identification Division Remarks text, enter the REM
keyword in the KYWD column, and the text starting in column 12,
on the same line. Continue on as many lines as you need. REM is
invalid for COBOL/2; to write remarks in this environment, use the
comment keyword /* instead. For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*----
 REM Comment text
 continues onto the next line.
-KYWD- 12-*----20---*----30---*----40---*----50---*----
 /* Comment text
 /* continues onto the next line.

If application accesses ... Specify this DB target ...

Two DB targets, including
VSAM

The non-VSAM target, because APS
always gives you access to the VSAM
target.

Two or more DB targets,
not including VSAM

Any of those DB targets. When you
generate the programs, first generate
just the programs of your specified DB
target. Then change the DB target to
the next target and generate just the
programs of that next target. For
example, if your application accesses
both VSAM and IMS subschemas,
generate your VSAM programs
separately from your IMS programs.
User’s Guide

234 Chapter 10 Create Batch Programs

ugpubb.book Page 234 Tuesday, February 19, 2002 9:39 AM
Specify Special-
Names

7 To write an Environment Division Special-Names statement, enter
the SPNM keyword in the KYWD column, and the statement
starting in column 12, on the same line.

Define File-
Control

8 Define the Input-Output Section’s File-Control paragraph as follows.
For each input and output file, enter the IO keyword in the KYWD
column, and, starting in column 12, enter the paragraph clauses. Do
not enter the word SELECT in the SELECT clause; APS generates it for
you. Continue on as many lines as you need. APS generates the
Input-Output Section and File-Control headers. For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*----
 IO INPUT-CUSTFILE
 ASSIGN TO EXTERNAL GARYDD
 ORGANIZATION IS LINE SEQUENTIAL
 IO OUTPUT-FILE
 ASSIGN TO EXTERNAL GARYOUT
 ORGANIZATION IS LINE SEQUENTIAL

Generated APS source:

 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT INPUT-CUSTFILE
 ASSIGN TO EXTERNAL GARYDD
 ORGANIZATION IS LINE SEQUENTIAL.
 SELECT OUTPUT-FILE
 ASSIGN TO EXTERNAL GARYOUT
 ORGANIZATION IS LINE SEQUENTIAL.

Define input file
description

9 Define the file description of your first (or only) input file in the File
Section as follows. Enter the FD keyword in the KYWD column, and
a COBOL file description starting in column 12. For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*----
 FD INPUT-CUSTFILE
 RECORD CONTAINS 80 CHARACTERS.

Define input file
record description

10 To define the File Section input file’s record description in COBOL
format, enter the 01 keyword in the KYWD column (columns 8 and
9), and the 01-level data item starting in column 12. To define
elementary data items, skip a line and enter them starting in
column 12, as shown below. We recommend that you indent each
new level of elementary data items four columns.

-KYWD- 12-*----20---*----30---*----40---*----50---*----
 01 INPUT-REC.
 05 INP-ACTION-CODE PIC X(1).
User’s Guide

Creating Batch Programs 235

ugpubb.book Page 235 Tuesday, February 19, 2002 9:39 AM
 05 INP-CUSTOMER-NO PIC X(6).
 05 INP-CUSTOMER-NAME PIC X(20).
 05 INP-CUSTOMER-ADDR PIC X(20).
 05 INP-CUSTOMER-CITY PIC X(20).
 05 INP-CUSTOMER-ZIP PIC X(9).
 05 FILLER PIC X(4).

11 To define the File Section input file’s record description in Data
Structure Painter format, enter the REC keyword in the KYWD
column (columns 8 through 10), and the 01-level data item starting
in column 12. To define elementary data items, skip a line and enter
them starting in column 16, as shown below. Do not enter the data
item level numbers, such as 01 or 05; APS automatically generates
them based on how you indent the items. We recommend that you
indent each new level of elementary data items four columns.

-KYWD- 12-*----20---*----30---*----40---*----50---*----
 REC INPUT-REC
 INP-ACTION-CODE X1
 INP-CUSTOMER-NO X6
 INP-CUSTOMER-NAME X20
 INP-CUSTOMER-ADDR X20
 INP-CUSTOMER-CITY X20
 INP-CUSTOMER-ZIP X9
 FILLER X4

Generated APS source:

 01 INPUT-REC.
 05 INP-ACTION-CODE PIC X(1).
 05 INP-CUSTOMER-NO PIC X(6).
 05 INP-CUSTOMER-NAME PIC X(20).
 05 INP-CUSTOMER-ADDR PIC X(20).
 05 INP-CUSTOMER-CITY PIC X(20).
 05 INP-CUSTOMER-ZIP PIC X(9).
 05 FILLER PIC X(4).

12 If you created the File Section input file’s record description using
the Data Structure Painter, include the data structure in your
program as follows. Enter the DS keyword in the KYWD column,
and the data structure file name in column 12. For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*----
 DS INREC

13 Define any additional input files in the File Section, in the same
manner that you defined the first one.
User’s Guide

236 Chapter 10 Create Batch Programs

ugpubb.book Page 236 Tuesday, February 19, 2002 9:39 AM
Define output file
description

14 Define the file description of your first (or only) output file in the
File Section as follows. Enter the FD keyword in the KYWD column,
and a COBOL file description starting in column 12. For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*----
 FD OUTPUT-FILE
 RECORD CONTAINS 80 CHARACTERS.

Define output file
record description

15 Define the File Section output file’s record description in the same
manner that you defined the input file’s record description, as
described in steps 10 through 12. For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*----
 01 OUTPUT-REC.
 05 OUTPUT-STATUS PIC X(2).
 05 OUTPUT-CUSTOMER-NO PIC X(6).
 05 OUTPUT-CUSTOMER-NAME PIC X(20).
 05 OUTPUT-CUSTOMER-ADDR PIC X(20).
 05 OUTPUT-CUSTOMER-CITY PIC X(20).
 05 OUTPUT-CUSTOMER-ZIP PIC X(9).
 05 OUTPUT-FILLER PIC X(3).

16 Define any additional output files in the File Section, in the same
manner that you defined the first one.

Define sort file
description

17 To define a sort file description in the File Section, enter the SD
keyword in the KYWD column, and the file description starting in
column 12. For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*----
 SD SORT-FILE
 RECORD CONTAINS 80 CHARACTERS
 DATA RECORD IS SORT-RECORD.

Define sort file
record description

18 Define the File Section sort file’s record description in the same
manner that you defined those of the input and output files. For
example:

-KYWD- 12-*----20---*----30---*----40---*----50---*----
 01 SORT-RECORD.
 05 SORT-CUSTOMER-NAME PIC X(8).
 05 FILLER PIC X(72).

Define or include
Working-Storage

structures

19 Mark the beginning of your Working-Storage entries by entering
the WS keyword in the KYWD column. Then skip a line and enter
your Working-Storage structures--such as data structures, copylibs,
and DB2 table and cursor declarations--as described below in steps
20 through 25.
User’s Guide

Creating Batch Programs 237

ugpubb.book Page 237 Tuesday, February 19, 2002 9:39 AM
20 To define in Working-Storage a data structure in COBOL format,
enter the 01 keyword in the KYWD column (columns 8 and 9), and
your 01-level data item starting in column 12. To define elementary
data items, skip a line and enter them starting in column 12, as
shown below. We recommend that you indent each new level of
elementary data items four columns. For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*----
 01 WS-STRUCT-IN-COBOL-FORMAT.
 05 MY-WS-FIELD-1 PIC X(8).
 05 MY-WS-FIELD-2.
 10 MY-WS-FIELD-3 PIC X(8).
 10 MY-WS-FIELD-4 PIC X(3).

Generated APS source:

 01 WS-STRUCT-IN-COBOL-FORMAT.
 05 MY-WS-FIELD-1 PIC X(8).
 05 MY-WS-FIELD-2.
 10 MY-WS-FIELD-3 PIC X(8).
 10 MY-WS-FIELD-4 PIC X(3).

21 To define in Working-Storage a data structure in Data Structure
Painter format, enter the REC keyword in the KYWD column
(columns 8 through 10), and the 01-level data item starting in
column 12. To define elementary data items, skip a line and enter
them starting in column 16, as shown below. Do not enter the data
item level numbers, such as 01 or 05; APS automatically generates
them based on how you indent the items. We recommend that you
indent each new level of elementary data items four columns. For
example:

-KYWD- 12-*----20---*----30---*----40---*----50---*----
 REC WS-STRUCT-IN-DSPAINTER-FORMAT
 MY-WS-FIELD-1 X8
 MY-WS-FIELD-2
 MY-WS-FIELD-3 X8
 MY-WS-FIELD-3 X3

Generated APS source:

 01 WS-STRUCT-IN-DSPAINTER-FORMAT.
 05 MY-WS-FIELD-1 PIC X(8).
 05 MY-WS-FIELD-2.
 10 MY-WS-FIELD-3 PIC X(8).
 10 MY-WS-FIELD-4 PIC X(3).
User’s Guide

238 Chapter 10 Create Batch Programs

ugpubb.book Page 238 Tuesday, February 19, 2002 9:39 AM
22 To include a copybook in Working-Storage, choose one of the
following methods:

• If you use a COBOL/2 compiler, or if your copybook contains an
indexed table, enter the SYWS keyword in the KYWD column,
and an APS % INCLUDE statement in column 12. For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*--
 SYWS % INCLUDE COPYLIB (MY-COPYBOOK)

• If you use an OS/VS COBOL compiler, and your copybook does
not contain an indexed table, do one of the following:

• Enter the 01 keyword in the KYWD column, and a COBOL
COPY statement in column 12. For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*--
 01 COPY MY-COPYBOOK

• Alternatively, copy the copybook into a Working-Storage
field, as follows:

-KYWD- 12-*----20---*----30---*----40---*----50---*--
 01 WS-COPYBOOK-FLD COPY MY-COPYBOOK

23 To include in Working-Storage an externally-defined data structure
defined in the Data Structure Painter, choose one of the following
methods:

• On the Application Painter, enter the data structure name in the
Data Str(ucture) field, and ws in the Loc(ation) field.

• Enter the DS keyword in the KYWD column, and the data
structure file name in column 12. For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*--
 DS DATARECS

24 To define in Working-Storage a DB2 table declaration or one or
more cursor declarations, enter the SQL keyword in the KYWD
column, and the declaration(s) in column 12. For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*----
 SQL DECLARE DSN8.TDEPT TABLE
 ... (DEPTNO CHAR(3) NOT NULL,
 ... DEPTNAME CHAR(36) NOT NULL,
 ... MGRNO CHAR(3) NOT NULL,
 ... ADMRDEPT CHAR(3) NOT NULL)
User’s Guide

Creating Batch Programs 239

ugpubb.book Page 239 Tuesday, February 19, 2002 9:39 AM
25 To include a PANVALET record in Working-Storage, enter the ++
keyword in the KYWD column, and the record name in column 12.
For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*----
 ++ PANWSREC

Define or include
Linkage Section

structures

26 If your program receives data from a calling program, define its
Linkage Section as follows. Mark the beginning of your Linkage
Section entries by entering the LK keyword in the KYWD column.
Skip a line and enter your Linkage Section structures in the same
manner that you enter Working-Storage structures.

Note: To include a copybook in the Linkage Section, substitute the
SYWS keyword, as shown in step 22, with the SYLT or SYLK keyword.

Begin to define

the Procedure
Division

27 Mark the beginning of the Procedure Division by entering either the
PROC or NTRY keyword to generate the PROCEDURE DIVISION
statement appropriate for your program, as shown below.

For example, enter the PROC keyword with the USING clause data
items TOTAL, W-BALANCE, and CHARGERECORD to generate a
PROCEDURE DIVISION USING statement in a called program, as
shown below.

-KYWD- 12-*----20---*----30---*----40---*----50---*----
 PROC TOTAL W-BALANCE CHARGERECORD

Program Type Procedure Division Keyword

Calling or non-calling NTRY or PROC; both keywords generate
a PROCEDURE DIVISION statement.

Called PROC with optional USING clause;
generates a PROCEDURE DIVISION
USING statement, enabling the
program to receive data items from a
calling program’ s CALL statement.

Any IMS program NTRY. PROC is invalid. To specify
arguments for a PROCEDURE DIVISION
USING clause, specify them in a TP-
LINKAGE call that you code in the
Linkage Section.
User’s Guide

240 Chapter 10 Create Batch Programs

ugpubb.book Page 240 Tuesday, February 19, 2002 9:39 AM
Generated APS source:

 PROCEDURE DIVISION USING TOTAL W-BALANCE CHARGERECORD.

Enter Procedure
Division source

code

28 On the next line, enter your Procedure Division source code, which
can include the following:

• COBOL, COBOL/2, or S-COBOL statements and paragraphs. To
write any paragraph, enter the PARA keyword in the KYWD
column, your paragraph name in column 12 on the same line,
and your paragraph statements on the following lines. For
information on writing S-COBOL statements, see the "S-COBOL
Structures" topic in the APS Reference.

• APS database (DB) calls. For a complete list of calls for all DB
targets, see the "Database Calls" topic in the APS Reference.

• COBOL, COBOL/2, or S-COBOL global stubs. To include a stub in
the program, enter the STUB keyword in the KYWD column and
your stub name in column 12 on the same line. For information
on writing global stubs, see the "Stubs" topic in the APS
Reference.

• Customization Facility macro calls and other statements. For
information on writing these statements, see the APS
Customization Facility User’s Guide.

For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*--
 PROC
 OPEN INPUT INPUT-CUSTFILE
 ... OUTPUT OUTPUT-FILE
 REPEAT
 READ INPUT-CUSTFILE
 WS-CUST-NO = INP-CUSTOMER-NO
 UNTIL AT END ON INPUT-CUSTFILE
 EVALUATE INP-ACTION-CODE
 WHEN ’Q’
 PERFORM QUERY-LOGIC
 WHEN ’U’
 PERFORM UPDATE-LOGIC
 WHEN ’D’
 PERFORM DELETE-LOGIC
 CLOSE INPUT-CUSTFILE
 ... OUTPUT-FILE

 PARA QUERY-LOGIC
User’s Guide

Creating Batch Programs 241

ugpubb.book Page 241 Tuesday, February 19, 2002 9:39 AM
 DB-OBTAIN REC CUSTOMER-REC
 ... WHERE CM_CUSTOMER_NO = #WS-CUST-NO
 IF OK-ON-REC
 OUTPUT-STATUS = ’SQ’
 PERFORM MOVE-COPYLIB-TO-OUTPUT
 PERFORM WRITE-MSGOUT
 ELSE
 OUTPUT-STATUS = ’UQ’
 PERFORM MOVE-INPUT-TO-OUTPUT
 PERFORM WRITE-MSGOUT
 .
 .

Define
Declaratives

Section

29 To define a Declaratives Section, choose one of the following
methods:

• To specify Declaratives Section sections and paragraphs, use the
DPAR keyword, as shown below. Do not enter the
DECLARATIVES header; APS generates it. APS also generates the
END DECLARATIVES statement at the appearance of another
keyword in the KYWD column; be sure that a keyword appears
at the end of your Declaratives Section.

-KYWD- 12-*----20---*----30---*----40---*----50---*--
 DPAR section-1-name SECTION declarative-sentence
 DPAR para-1-name
 /* para-1-name source code
 .
 .
 .
 DPAR section-2-name SECTION declarative-sentence
 DPAR para-2-name
 /* para-2-name source code
 .
 .

Generated APS source:

 DECLARATIVES.

 section-1-name SECTION. declarative-sentence
 para-1-name.
 /* para-1-name source code
 .
 .
 .
 section-2-name SECTION. declarative-sentence
 para-2-name.
User’s Guide

242 Chapter 10 Create Batch Programs

ugpubb.book Page 242 Tuesday, February 19, 2002 9:39 AM
 /* para-2-name source code
 .
 .

 END DECLARATIVES.

• To specify Declaratives Section statements only--not sections or
paragraphs--use the DECL keyword, as shown below.

-KYWD- 12-*----20---*----30---*----40---*----50---*--
 DECL declarative-statement
 declarative-statement

Generated APS source:

 DECLARATIVES.

 declarative-statement
 declarative-statement

 END DECLARATIVES.

Write comments 30 To document your program with comments, use the following
formats in the following program locations. Note that in the
Procedure Division, you can enter comments at the end of a line of
source code.

Enter
Customization
Facility macro

calls and
statements

31 Enter any Customization Facility macro calls or statements that your
program requires. For example, if on the Application Painter you
include a user-defined macro library in your program, you should
call the macros you need, and assign values to any variables that the

Program
Location Comment Format

Anywhere -KYWD- 12-*----20---*----30---*----40---*--
 /* comment text
 /* comment text

Procedure
Division

-KYWD- 12-*----20---*----30---*----40---*--
 /* comment text
 program source code /* comment text
User’s Guide

Creating Batch Programs 243

ugpubb.book Page 243 Tuesday, February 19, 2002 9:39 AM
macros require. Use the following keywords to place the calls and
statements in the following program locations:

For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*----
 SYM1
 /* MACRO VARIABLE TO APPEAR AT BEGINNING OF PROGRAM,
 /* AFTER MACRO LIBRARY THAT I INCLUDE AT BEGINNING
 /* OF PROGRAM.
 % &REC-LEN = 80
 SYFD
 /* MACRO CALL TO APPEAR IN FILE SECTION, AFTER MACRO
 /* LIBRARY THAT I INCLUDE AT BEGINNING OF FILE
 /* SECTION.
 % $INPUTFILE-REC-DESCRIP(’INPUT-REC’)

Keyword Program Location

SYM1 At the beginning of the program, before macro
libraries that you include at the beginning of the
program

SYM2 After macro libraries that you include at the
beginning of the program

SYEN In the Environment Division, after the Special-Names
paragraph

SYIO In the Input-Output Section, after macro libraries that
you include at the beginning of the Input-Output
Section

SYDD At the beginning of the Data Division

SYFD In the File Section, after macro libraries that you
include at the beginning of the File Section

SYWS In the Working-Storage Section, after macro libraries
and data structures that you include in Working-
Storage

SYLT In the Linkage Section, after macro libraries and data
structures that you include at the beginning of
Linkage

SYLK In the Linkage Section, after source code that you
include with the SYLT keyword

SYRP In the Report Section, after any macro libraries that
you include at the beginning of the Report Section

SYBT At the end of the program
User’s Guide

244 Chapter 10 Create Batch Programs

ugpubb.book Page 244 Tuesday, February 19, 2002 9:39 AM
Validate source
code syntax

32 To validate that your source code contains no Program Painter
syntax errors, enter validate or val in the Command field. APS
displays a message for each syntax error.

Preview the
program as

generated source

33 To preview the program as it will look when generated, enter
convert or conv in the Command field. APS converts the Program
Painter source code to generated APS source code. APS does not
include in the converted source any components defined externally
to the program; APS includes them when you generate the
program. Such externally-defined components not included at this
step are:

To view the source in Program Painter format again, enter reset or
unconv.

34 Exit the Program Painter by pressing PF3 or entering cancel.

Special Consideration
When modifying your program, do not modify the generated source
code; modify only your Program Painter source code.

Sample Batch Program
Below is a complete program illustrating many APS batch programming
features.

Program Painter source:

-KYWD- 12-*----20---*----30---*----40---*----50---*----
 IO INPUT-CUSTFILE
 ASSIGN TO GARYDD

Component Project\Group Data Set

Database record definitions DDISYMB and COPYLIB

Data structures included from copylibs COPYLIB

Data structures included from the Data
Structure Painter

APSDATA

User-defined macros USERMACS
User’s Guide

Sample Batch Program 245

ugpubb.book Page 245 Tuesday, February 19, 2002 9:39 AM
 ORGANIZATION IS LINE SEQUENTIAL
 IO OUTPUT-FILE
 ASSIGN TO GARYOUT
 ORGANIZATION IS LINE SEQUENTIAL
 FD INPUT-CUSTFILE
 RECORD CONTAINS 80 CHARACTERS.
 01 INPUT-REC.
 05 INP-ACTION-CODE PIC X(1).
 05 INP-CUSTOMER-NO PIC X(6).
 05 INP-CUSTOMER-NAME PIC X(20).
 05 INP-CUSTOMER-ADDR PIC X(20).
 05 INP-CUSTOMER-CITY PIC X(20).
 05 INP-CUSTOMER-ZIP PIC X(9).
 05 FILLER PIC X(4).
 FD OUTPUT-CUSTFILE
 RECORD CONTAINS 80 CHARACTERS.
 01 OUTPUT-REC.
 05 OUTPUT-STATUS PIC X(2).
 05 OUTPUT-CUSTOMER-NO PIC X(6).
 05 OUTPUT-CUSTOMER-NAME PIC X(20).
 05 OUTPUT-CUSTOMER-ADDR PIC X(20).
 05 OUTPUT-CUSTOMER-CITY PIC X(20).
 05 OUTPUT-CUSTOMER-ZIP PIC X(9).
 05 OUTPUT-FILLER PIC X(3).

 PROC
 OPEN INPUT INPUT-CUSTFILE
 ... OUTPUT OUTPUT-FILE
 REPEAT
 READ INPUT-CUSTFILE
 WS-CUST-NO = INP-CUSTOMER-NO
 UNTIL AT END ON INPUT-CUSTFILE
 EVALUATE INP-ACTION-CODE
 WHEN ’Q’
 PERFORM QUERY-LOGIC
 WHEN ’U’
 PERFORM UPDATE-LOGIC
 WHEN ’D’
 PERFORM DELETE-LOGIC
 CLOSE INPUT-CUSTFILE
 ... OUTPUT-FILE

 PARA QUERY-LOGIC
 DB-OBTAIN REC CUSTOMER-REC
 ... WHERE CM_CUSTOMER_NO = #WS-CUST-NO
 IF OK-ON-REC
 OUTPUT-STATUS = ’SQ’
 PERFORM MOVE-COPYLIB-TO-OUTPUT
User’s Guide

246 Chapter 10 Create Batch Programs

ugpubb.book Page 246 Tuesday, February 19, 2002 9:39 AM
 PERFORM WRITE-MSGOUT
 ELSE
 OUTPUT-STATUS = ’UQ’
 PERFORM MOVE-INPUT-TO-OUTPUT
 PERFORM WRITE-MSGOUT

 PARA UPDATE-LOGIC
 PERFORM MOVE-INPUT-TO-COPYLIB
 DB-MODIFY REC CUSTOMER-REC
 ... WHERE CM_CUSTOMER_NO = #WS-CUST-NO
 IF OK-ON-REC
 OUTPUT-STATUS = ’SM’
 PERFORM MOVE-COPYLIB-TO-OUTPUT
 PERFORM WRITE-MSGOUT
 ELSE
 OUTPUT-STATUS = ’UM’
 PERFORM MOVE-COPYLIB-TO-OUTPUT
 PERFORM WRITE-MSGOUT

 PARA DELETE-LOGIC
 DB-ERASE REC CUSTOMER-REC
 ... WHERE CM_CUSTOMER_NO = #WS-CUST-NO
 IF OK-ON-REC
 OUTPUT-STATUS = ’SE’
 PERFORM MOVE-INPUT-TO-OUTPUT
 PERFORM WRITE-MSGOUT
 ELSE
 OUTPUT-STATUS = ’UE’
 PERFORM MOVE-INPUT-TO-OUTPUT
 PERFORM WRITE-MSGOUT

 PARA ADD-LOGIC
 PERFORM MOVE-INPUT-TO-COPYLIB
 DB-STORE REC CUSTOMER-REC
 ... WHERE CM_CUSTOMER_NO = #WS-CUST-NO
 IF OK-ON-REC
 OUTPUT-STATUS = ’SS’
 PERFORM MOVE-INPUT-TO-OUTPUT
 PERFORM WRITE-MSGOUT
 ELSE
 OUTPUT-STATUS = ’BS’
 PERFORM MOVE-INPUT-TO-OUTPUT
 PERFORM WRITE-MSGOUT

 PARA MOVE-INPUT-TO-OUTPUT
 OUTPUT-STATUS = OUTPUT-STATUS
 OUTPUT-CUSTOMER-NO = INP-CUSTOMER-NO
 OUTPUT-CUSTOMER-NAME = INP-CUSTOMER-NAME
User’s Guide

Sample Batch Program 247

ugpubb.book Page 247 Tuesday, February 19, 2002 9:39 AM
 OUTPUT-CUSTOMER-ADDR = INP-CUSTOMER-ADDR
 OUTPUT-CUSTOMER-CITY = INP-CUSTOMER-CITY
 OUTPUT-CUSTOMER-ZIP = INP-CUSTOMER-ZIP

 PARA MOVE-COPYLIB-TO-OUTPUT
 OUTPUT-CUSTOMER-NO = CM-CUSTOMER-NO
 OUTPUT-CUSTOMER-NAME = CM-CUSTOMER-NAME
 OUTPUT-CUSTOMER-ADDR = CM-CUSTOMER-ADDR
 OUTPUT-CUSTOMER-CITY = CM-CUSTOMER-CITY
 OUTPUT-CUSTOMER-ZIP = CM-CUSTOMER-ZIP

 PARA MOVE-INPUT-TO-COPYLIB
 CM-CUSTOMER-NO = INP-CUSTOMER-NO
 CM-CUSTOMER-NAME = INP-CUSTOMER-NAME
 CM-CUSTOMER-ADDR = INP-CUSTOMER-ADDR
 CM-CUSTOMER-CITY = INP-CUSTOMER-CITY
 CM-CUSTOMER-ZIP = INP-CUSTOMER-ZIP

 PARA WRITE-MSGOUT
 WRITE OUTPUT-REC
 WS
 01 THEFLDS.
 05 WS-CUST-NO PIC X(6).

Generated APS source:

 % &AP-GEN-VER = 2200
 % &AP-PGM-ID = "SAMPLPGM"
 % &AP-MAIN-PROGRAM- = "NO"
 % &AP-GEN-DC-TARGET = "MVS"
 % &AP-GEN-DB-TARGET = "VSAM"
 % &AP-GEN-USER-HELP = "NO"
 % &AP-PROC-DIV-KYWD-SEEN = 1
 % &AP-FILE-CONTROL-SEEN = 1
 % &AP-SUBSCHEMA = "SAMPLSUB"
 % &AP-APPLICATION-ID = "JOHND"
 % &AP-GEN-DATE = "930407"
 % &AP-GEN-TIME = "07244461"

 %* --- SUBSCHEMA / PSB FROM APPLICATION DEFINITION ---
 $DB-SUBSCHEMA("SAMPLSUB")

 IDENTIFICATION DIVISION.
 PROGRAM-ID. SAMPLPGM.
 AUTHOR. JOHND.
 DATE-WRITTEN. 93/04/07.
 DATE-COMPILED. &COMPILETIME.
User’s Guide

248 Chapter 10 Create Batch Programs

ugpubb.book Page 248 Tuesday, February 19, 2002 9:39 AM

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.
 SOURCE-COMPUTER. &SYSTEM.
 OBJECT-COMPUTER. &SYSTEM.

 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT INPUT-CUSTFILE
 ASSIGN GARYDD
 ORGANIZATION IS LINE SEQUENTIAL.
 SELECT OUTPUT-FILE
 ASSIGN GARYOUT
 ORGANIZATION IS LINE SEQUENTIAL.

 DATA DIVISION.

 FILE SECTION.

 FD INPUT-CUSTFILE
 RECORD CONTAINS 80 CHARACTERS.
 01 INPUT-REC.
 05 INP-ACTION-CODE PIC X(1).
 05 INP-CUSTOMER-NO PIC X(6).
 05 INP-CUSTOMER-NAME PIC X(20).
 05 INP-CUSTOMER-ADDR PIC X(20).
 05 INP-CUSTOMER-CITY PIC X(20).
 05 INP-CUSTOMER-ZIP PIC X(9).
 05 FILLER PIC X(4).
 FD OUTPUT-FILE
 RECORD CONTAINS 80 CHARACTERS.
 01 OUTPUT-REC
 05 OUTPUT-STATUS PIC X(2).
 05 OUTPUT-CUSTOMER-NO PIC X(6).
 05 OUTPUT-CUSTOMER-NAME PIC X(20).
 05 OUTPUT-CUSTOMER-ADDR PIC X(20).
 05 OUTPUT-CUSTOMER-CITY PIC X(20).
 05 OUTPUT-CUSTOMER-ZIP PIC X(9).
 05 OUTPUT-FILLER PIC X(3).

 WORKING-STORAGE SECTION.
 $TP-WS-MARKER

 01 THEFLDS.
 05 WS-CUST-NO PIC X(6).

User’s Guide

Sample Batch Program 249

ugpubb.book Page 249 Tuesday, February 19, 2002 9:39 AM
 01 TEXT-MSG PIC X(30)
 VALUE &SQ+PLEASE ENTER NEXT TRANSID&SQ.

 PROCEDURE DIVISION.
 OPEN INPUT INPUT-CUSTFILE
 ... OUTPUT OUTPUT-FILE
 REPEAT
 READ INPUT-CUSTFILE
 WS-CUST-NO = INP-CUSTOMER-NO
 UNTIL AT END ON INPUT-CUSTFILE
 EVALUATE INP-ACTION-CODE
 WHEN ’Q’
 PERFORM QUERY-LOGIC
 WHEN ’U’
 PERFORM UPDATE-LOGIC
 WHEN ’D’
 PERFORM DELETE-LOGIC
 CLOSE INPUT-CUSTFILE
 ... OUTPUT-FILE

 QUERY-LOGIC
 $DB-OBTAIN ("REC CUSTOMER-REC WHERE CM_CUSTOMER_NO = ",
 %... "#WS-CUST-NO")
 IF OK-ON-REC
 OUTPUT-STATUS = ’SQ’
 PERFORM MOVE-COPYLIB-TO-OUTPUT
 PERFORM WRITE-MSGOUT
 ELSE
 OUTPUT-STATUS = ’UQ’
 PERFORM MOVE-INPUT-TO-OUTPUT
 PERFORM WRITE-MSGOUT

 UPDATE-LOGIC
 PERFORM MOVE-INPUT-TO-COPYLIB
 $DB-MODIFY ("REC CUSTOMER-REC WHERE CM_CUSTOMER_NO = ",
 %... "#WS-CUST-NO")
 IF OK-ON-REC
 OUTPUT-STATUS = ’SM’
 PERFORM MOVE-COPYLIB-TO-OUTPUT
 PERFORM WRITE-MSGOUT
 ELSE
 OUTPUT-STATUS = ’UM’
 PERFORM MOVE-COPYLIB-TO-OUTPUT
 PERFORM WRITE-MSGOUT

 DELETE-LOGIC
 $DB-ERASE ("REC CUSTOMER-REC WHERE CM_CUSTOMER_NO = ",
 %... "#WS-CUST-NO")
User’s Guide

250 Chapter 10 Create Batch Programs

ugpubb.book Page 250 Tuesday, February 19, 2002 9:39 AM
 IF OK-ON-REC
 OUTPUT-STATUS = ’SE’
 PERFORM MOVE-INPUT-TO-OUTPUT
 PERFORM WRITE-MSGOUT
 ELSE
 OUTPUT-STATUS = ’UE’
 PERFORM MOVE-INPUT-TO-OUTPUT
 PERFORM WRITE-MSGOUT

 ADD-LOGIC
 PERFORM MOVE-INPUT-TO-COPYLIB
 $DB-STORE ("REC CUSTOMER-REC WHERE CM_CUSTOMER_NO = ",
 %... "#WS-CUST-NO")
 IF OK-ON-REC
 OUTPUT-STATUS = ’SS’
 PERFORM MOVE-INPUT-TO-OUTPUT
 PERFORM WRITE-MSGOUT
 ELSE
 OUTPUT-STATUS = ’BS’
 PERFORM MOVE-INPUT-TO-OUTPUT
 PERFORM WRITE-MSGOUT

 MOVE-INPUT-TO-OUTPUT
 OUTPUT-STATUS = OUTPUT-STATUS
 OUTPUT-CUSTOMER-NO = INP-CUSTOMER-NO
 OUTPUT-CUSTOMER-NAME = INP-CUSTOMER-NAME
 OUTPUT-CUSTOMER-ADDR = INP-CUSTOMER-ADDR
 OUTPUT-CUSTOMER-CITY = INP-CUSTOMER-CITY
 OUTPUT-CUSTOMER-ZIP = INP-CUSTOMER-ZIP

 MOVE-COPYLIB-TO-OUTPUT
 OUTPUT-CUSTOMER-NO = CM-CUSTOMER-NO
 OUTPUT-CUSTOMER-NAME = CM-CUSTOMER-NAME
 OUTPUT-CUSTOMER-ADDR = CM-CUSTOMER-ADDR
 OUTPUT-CUSTOMER-CITY = CM-CUSTOMER-CITY
 OUTPUT-CUSTOMER-ZIP = CM-CUSTOMER-ZIP

 MOVE-INPUT-TO-COPYLIB
 CM-CUSTOMER-NO = INP-CUSTOMER-NO
 CM-CUSTOMER-NAME = INP-CUSTOMER-NAME
 CM-CUSTOMER-ADDR = INP-CUSTOMER-ADDR
 CM-CUSTOMER-CITY = INP-CUSTOMER-CITY
 CM-CUSTOMER-ZIP = INP-CUSTOMER-ZIP

 WRITE-MSGOUT
 WRITE OUTPUT-REC
User’s Guide

251

ugpubb.book Page 251 Tuesday, February 19, 2002 9:39 AM
11 Create Reports with Report
Writer

This chapter contains the following sections:

• Concepts of APS Report Writing

• Painting Report Mock-Ups

• Creating Report Programs

• Generate Multiple SUM or SOURCE Statements

• Mapping Considerations

• Sample Program

Concepts of APS Report Writing
Specify the

physical report
appearance

APS report writing features let you produce a report by specifying the
physical appearance of the report, rather than the detailed procedures
necessary to produce that report. Instead of writing COBOL statements
that determine the relationship of output lines, recognize page
overflow, construct headers and footers, recognize logical data groups,
format output lines, map data to output fields, and perform data
calculations, APS sets up the routines needed to produce the report in
the requested format -- all you do is paint a visual representation of
the report and specify which items control the report logic.

Paint report
mock-ups

First, you paint the report layouts, called mock-ups, in the Report
Painter, which provides a free-form definition facility. You can define
the mock-up by typing literals and output fields to visually represent
the report output. You can specify both floating numeric and
alphanumeric output edit masks directly within the report mock-up.
User’s Guide

252 Chapter 11 Create Reports with Report Writer

ugpubb.book Page 252 Tuesday, February 19, 2002 9:39 AM
Reuse report
mock-ups

APS for z/OS automatically stores mock-ups in the Application
Dictionary. The mock-ups are available as report templates or for use in
multiple programs.

Define report
logic

After you create a mock-up, you define the report logic in the Program
Painter using APS Report Writer structures. Report Writer structures let
you automatically perform paging, calculate field values, test and
execute control breaks, generate multiple reports, and generate all
logic necessary to map fields between reports and databases or files.
You can include multiple reports in a single program.

Name the input
and output files

Using the Program Painter IO and FD keywords, you name the input
data file, the output report file, and the report itself.

Add a Report
Section

With the Program Painter RED, MOCK, and 01 keywords, you add a
Report Section naming the report and defining the format of each
report named. There are two types of format entries:

• Those that describe the physical aspects of the report format, such
as the maximum number of lines per page, where report lines
appear on the page, and which data items are controls.

• Those that describe the function, format, and characteristics of each
report line.

Determine your
report groups

APS categorizes the report lines into report groups, which are groups of
report lines that make up the headings, body, and footings of the
report. Report groups include the following:

• Report Heading - Header lines that print once at the beginning of a
report. Optionally, it can appear on a page by itself.

• Page Heading - Header lines that print at the top of each page.

• Control Heading - Header lines that print each time a control break
occurs.

• Detail - Detail lines that are the body of the report. Detail lines are
not required for summary reports.

• Control Footing - Line(s) of totals that print at the end of each detail
group, immediately following the detail lines.

• Page Footing - Footer lines that print at the bottom of each page.

• Report Footing - Footer lines that print once at the end of a report.
User’s Guide

Concepts of APS Report Writing 253

ugpubb.book Page 253 Tuesday, February 19, 2002 9:39 AM
Types of Report Groups shows a sample mock-up with the various report
group types.

Types of Report Groups:

Further defining
detail lines

Entries for the detail lines which make up the body of the report
describe the characteristics of the data items, such as the format, its
placement in relation to the other data items, and any control factors.
You can use the following statements to define the line contents:

• The SOURCE statement maps a data item to the report output field,
using the current value of this data item each time the field prints.

• The REFERENCE statement identifies a non-printing data item for
summing in a control footing.

• The SUM statement totals the values in the named fields. When a
SUM statement executes, APS automatically:

• Creates a Working-Storage SUM accumulator field for each data
item.

• Increments the SUM accumulator.

• Prints the accumulated values at control break time.

• Resets the SUM accumulator to zero after printing.

Report Heading WONDERFUL WIDGETS INCORPORATED STOCK
REPORT XXXXXX XXX

Page Heading MID-ATLANTIC STOCK REPORT XXXXXX XXX

Control Heading LOCATION LAST COUNT QUANTITY QUANTITY
QUANTITY DATE IN STOCK ISSUED RECEIVED

Detail Line XXXXXXXXXXXX 99/99/99 ZZZ,ZZ9 ZZZ,ZZ9
ZZZ,ZZ9 --------- --------- ---------

Control Footing TOTAL BY LOCATION: Z,ZZZ,ZZ9 Z,ZZZ,ZZ9
Z,ZZZ,ZZ9

Control Footing
Final

TOTAL NUMBER OF SALES BY LOCATION: ZZZ,ZZ9
TOTAL WONDERFUL WIDGETS IN STOCK: Z,ZZZ,ZZ9
TOTAL WONDERFUL WIDGETS ISSUED: Z,ZZZ,ZZ9
TOTAL WONDERFUL WIDGETS RECEIVED: Z,ZZZ,ZZ9
TOTAL WONDERFUL WIDGETS SOLD: Z,ZZZ,ZZ9

Page Footing PAGE ZZZ9

Report Footing ***** END OF REPORT *****
User’s Guide

254 Chapter 11 Create Reports with Report Writer

ugpubb.book Page 254 Tuesday, February 19, 2002 9:39 AM
• The VALUE statement designates a literal value to print for the field
each time the line prints.

Set control breaks You use controls to specify how to arrange the data your report
displays. For example, you might want to display detail lines arranged
by sales territories within cities or states or both. You can have up to 28
control breaks. APS processes controls from the most inclusive down to
the least inclusive, that is from major to minor. When a data item
designated as a control changes value, such as a monthly change in a
date field, a control break occurs, and APS does the following for you:

• Prints the detail line that caused the break.

• Prints control headings for any lower-level data items, followed by
the heading for the data item that caused the control break.

• Prints control totals for the current and lower-level data items.

• Clears all associated counters and accumulators.

Produce the
report in the

Procedure
Division

In the Procedure Division, you open your input and output files, execute
and print the report, and close the files, using the following three
Report Writer statements:

• The INITIATE statement performs functions in the Report Writer
analogous to the OPEN statement for individual files. INITIATE Logic
Processing illustrates INITIATE processing.

Figure 11-1. INITIATE Logic Processing

• The GENERATE statement produces the body of the report, and
executes and prints the entire report. APS automatically does the
following for you:

• Prints specified headings and footings

• Increments and resets counters and accumulators as necessary
User’s Guide

Concepts of APS Report Writing 255

ugpubb.book Page 255 Tuesday, February 19, 2002 9:39 AM
• Obtains source information

• Produces sum information

• Moves values to the data item(s) in the report group entries

• Tests controls

• Prints detail lines

• Pages the report

• Prints the all lines required when a control break occurs

GENERATE Logic Processing and GENERATE Logic Processing
illustrate GENERATE processing.

Figure 11-2. GENERATE Logic Processing

Figure 11-3. GENERATE Logic Processing

• The optional USE BEFORE REPORTING statement lets you specify any
additional processing you want done to a heading or footing report
User’s Guide

256 Chapter 11 Create Reports with Report Writer

ugpubb.book Page 256 Tuesday, February 19, 2002 9:39 AM
group, such as an additional calculation or a line edit, prior to
printing.

• The TERMINATE statement completes the processing of a report. It is
analogous to the CLOSE statement for individual files. TERMINATE
Logic Processing below illustrates TERMINATE processing.

Figure 11-4. TERMINATE Logic Processing

Use special
counters

APS Report Writer provides two special counters that you can use in any
Procedure Division statement:

• You can reference LINE-COUNTER to determine when to print a
PAGE HEADING or a PAGE FOOTING report group. The maximum
value of the LINE-COUNTER is based on the number of lines per
page specified in the PAGE LIMIT(S) clause.

• You can reference PAGE-COUNTER in a SOURCE statement to print
the page number.

View sample
reports

Sample Report Program Structure shows a sample report program
structure. Sample Program shows a report mock-up, complete APS
program code, generated COBOL source code, and printed report.

Sample Report Program Structure

INPUT-OUTPUT SECTION

KYWD 12-*----20---*----30---*----40---*----50---*--
IO SELECT statement

FILE SECTION

KYWD 12-*----20---*----30---*----40---*----50---*--
FD inputfile FD clauses
User’s Guide

Concepts of APS Report Writing 257

ugpubb.book Page 257 Tuesday, February 19, 2002 9:39 AM
01 recordname PIC picclause
FD reportfile FD clauses
 REPORT IS | REPORTS ARE clause

REPORT SECTION

KYWD 12-*----20---*----30---*----40---*----50---*--
RED reportfilename
 CODE clause
 CONTROL clause
 WRITE ROUTINE clause
 PAGE LIMIT clause
 FIRST DETAIL clause
 LAST DETAIL clause
 FOOTING clause

MOCK mockupreportname

Report Group Types:

• Header Types (Report, Page, and Control Headers)

KYWD 12-*----20---*----30---*----40---*----50---*--
01 TYPE clause for report, page or control header
 MOCKUP LINES clause
 SOURCE clause | VALUE clause

• Detail Line Type

KYWD 12-*----20---*----30---*----40---*----50---*--
01 TYPE DETAIL
 MOCKUP LINES clause
 SOURCE clause | VALUE clause
 REFERENCE clause

• Footer Types (Report, Page, and Control Footers)

KYWD 12-*----20---*----30---*----40---*----50---*--
01 TYPE clause for report, page or control header
 MOCKUP clause
 SOURCE clause | VALUE clause
 SUM clause

PROCEDURE DIVISION

KYWD 12-*----20---*----30---*----40---*----50---*--
NTRY |
PROC
 .
 .
User’s Guide

258 Chapter 11 Create Reports with Report Writer

ugpubb.book Page 258 Tuesday, February 19, 2002 9:39 AM
 .
 INITIATE statement
 .
 .
 .
 GENERATE statement
 .
 .
 .
 TERMINATE statement
 .
 .
 .

Sample Report Program Code

-KYWD- 12-*----20---*----30---*----40---*----50---*-
 IO INPUT-FILE ASSIGN TO UT-S-FILEIN.
 IO REPORT-OUTPUT-FILE ASSIGN TO UT-S-REPTOUT.

 FD INPUT-FILE
 LABEL RECORDS ARE STANDARD
 BLOCK CONTAINS 0 CHARACTERS.
 01 PART-STOCK-REC PIC X(80).

 FD REPORT-OUTPUT-FILE
 LABEL RECORDS ARE STANDARD
 REPORT IS STOCK-REPORT.
 RED STOCK-REPORT
 CONTROLS ARE FINAL WS-LOCATION-CODE
 PAGE LIMIT IS 50
 FIRST DETAIL 10
 LAST DETAIL 40
 FOOTING 47.

 MOCK STCKRPT

 01 TYPE IS REPORT HEADING NEXT GROUP NEXT PAGE
 LINE 20.
 MOCKUP LINES 1 THRU 6
 SOURCE WS-DATE

 01 TYPE IS PAGE HEADING.
 MOCKUP LINES 7 THRU 9
 SOURCE WS-DATE
 .
 .
 .
User’s Guide

Painting Report Mock-Ups 259

ugpubb.book Page 259 Tuesday, February 19, 2002 9:39 AM
 NTRY
 OPEN INPUT INPUT-FILE
 ...OUTPUT REPORT-OUTPUT-FILE
 ACCEPT WS-DATE-HOLD FROM DATE
 .
 .
 .

Painting Report Mock-Ups
To paint report mock-ups, perform the following steps:

1 Access the Report Painter
To access the Report Painter to create a new report mock-up or edit
a current mock-up, do one of the following:

• From the Application Painter:

• Enter a report mock-up name in the Reports field associated
with your program.

• Enter s in the selection field next to the name and press
Enter.

• From the APS Painter Menu:

• To edit a report mock-up, type rp in the Type field and the
report mock-up name in the Member field. Then press Enter.

• To browse a report mock-up, type b in the Command field, rp
in the Type field, and the mock-up name in the Member
field. Then press Enter.

• To display a member list from which to select mock-ups, type
rp in the Type field, leave the Member field blank, and press
Enter. Then select the member from the member list.

Paint the mock-up 2 To create a mock-up, type the literals and output fields in columns 1
through 247, as follows.

• To create a literal field, type the literal characters.
User’s Guide

260 Chapter 11 Create Reports with Report Writer

ugpubb.book Page 260 Tuesday, February 19, 2002 9:39 AM
• To create an output field, type a PIC character string, for
example Z,ZZZ,ZZ9 or XXXXX. You can use the following COBOL
edit masks:

• Floating numeric formats, including: * $ + - S 9 Z

• Alphanumeric masks

Figure 11-5. Creating a Prgram Mock-Up

3 Use ISPF editor commands to edit the text. To view a mock-up larger
than your screen, press F10 and F11 to scroll left and right.

Special Considerations
• When you add or delete a line from your report mock-up, always

renumber the line numbers, so you can accurately reflect them in
your report program code. To do so, type ren or renum in the
Command line and press Enter.

• The first character of the report mock-up name must be alphabetic,
@, or #; the remaining characters can be alphabetic, numeric, @, $,
or #.

• Reports can be a maximum of 200 lines and 247 columns.

• In your program, the data field PIC strings on the mock-up must
match the detail line data item descriptions in your Report Section.
User’s Guide

Creating Report Programs 261

ugpubb.book Page 261 Tuesday, February 19, 2002 9:39 AM
Report Writer matches the mock-up fields to the program field
descriptions from left to right, from top to bottom.

• The report mock-up determines the columns where literals and data
items print. Your report program code determines the lines where
they print.

• APS stores report mock-ups in your APS Project Group APSREPT data
set.

Creating Report Programs
To create a batch report program in the Program Painter, follow these
steps:

Specify DB and DC
targets

1 To specify your DB and DC targets in the Application Painter, follow
steps 2 and 3 in Creating Batch Programs.

Access the
program

2 To create or edit a program, do one of the following:

• From the Application Painter, type the program name in the
Program field on the same line as its associated mock-up, and
type s in the selection field next to the program name. Then
press Enter.

• From the APS Painter Menu, type the program name in the
Member field and press Enter. Or, leave the Member field blank,
press Enter, and then select the applicable member from the
member list.

Code the
input/output

statements

3 Specify the FILE-CONTROL SELECT information with the Program
Painter IO keyword. Use the following format:

-KYWD- 12-*----20---*----30---*----40---*---50
 IO filename ASSIGN [TO] systemname
 Applicable COBOL FILE-CONTROL clauses

4 Code the program input file description with the Program Painter
FD keyword, as follows:

-KYWD- 12-*----20---*----30---*----40---*----
 FD inputfilename
 LABEL RECORDS clause
 BLOCK CONTAINS clause
User’s Guide

262 Chapter 11 Create Reports with Report Writer

ugpubb.book Page 262 Tuesday, February 19, 2002 9:39 AM
 [Other applicable COBOL FD clauses]
 01 inputrecordname PIC clause.

For example:

-KYWD- 12-*----20---*----30---*----40---*----
 FD INPUT-FILE
 LABEL RECORDS ARE STANDARD
 BLOCK CONTAINS 0 CHARACTERS
 01 PART-STOC-REC PIC X(80).

5 Determine the output record size. The default size is 133, the
standard mock-up size of 132 plus 1 byte for the carriage control
character. To define a different report record size, calculate the size
as follows:

Record Size = Report mock-up size (maximum 247 characters)
+ 1 byte for carriage control
+ 2 bytes for the CODE clause, if used.

6 Then, code the program output file description with the Program
Painter FD keyword, as follows. To accept the default record size,
omit the RECORD CONTAINS clause.

-KYWD- 12-*----20---*----30---*----40---*----
 FD outputfilename
 LABEL RECORDS clause
 [RECORD CONTAINS clause]
 [Other applicable COBOL FD clauses]
 REPORT IS|ARE reportname1 [... reportname15]
 01 outputrecordname PIC clause.

For example:

-KYWD- 12-*----20---*----30---*----40---*----
 FD REPORT-OUTPUT-FILE
 LABEL RECORDS ARE STANDARD
 REPORT IS STOCK-REPORT

 WS WS-PART-STOC-REC.
 05 WS-LOCATION-CODE PIC X(12) VALUE SPACES.
 05 WS-LAST-COUNT-DATE.
 10 WS-LAST-COUNT-MONTH PIC 99 VALUE 0.
 10 WS-LAST-COUNT-DAY PIC 99 VALUE 0.
 10 WS-LAST-COUNT-YEAR PIC 99 VALUE 0.
 05 WS-QTY-IN-STOCK PIC 9(6) VALUE 0.
 05 WS-QTY-ISSUED PIC 9(6) VALUE 0.
 05 WS-QTY-RECEIVED PIC 9(6) VALUE 0.
User’s Guide

Creating Report Programs 263

ugpubb.book Page 263 Tuesday, February 19, 2002 9:39 AM
 05 WS-NO-OF-SALES PIC 9(6) VALUE 0.
 05 FILLER PIC X(40) VALUE SPACES.

Add Working-
Storage entries

7 After the output record description, add any Working-Storage
entries needed for your report at this point in your program. For
example:

-KYWD- 12-*----20---*----30---*----40---*----
 WS WS-DATE.
 05 WS-DATE-MM PIC 9(2).
 05 WS-DATE-DD PIC 9(2).
 05 WS-DATE-YY PIC 9(2).
 WS WS-DATE-HOLD.
 05 WS-DATE-YY-X PIC 9(2).
 05 WS-DATE-MM-X PIC 9(2).
 05 WS-DATE-DD-X PIC 9(2).

Identify the
report

8 To identify the report, code the RED keyword and the report name,
as follows:

-KYWD- 12-*----20---*----30---*----40---*----
 RED reportname

For example:

-KYWD- 12-*----20---*----30---*----40---*----
 RED STOCK-REPORT

Describe the
printed page

9 Identify the data items to test for a control break. The order in
which you code the data items creates the control hierarchy, where
FINAL is the highest control, the first data item is the major control,
and the last data item is the minor (lowest) control. Use the
following syntax:

-KYWD- 12-*----20---*----30---*----40---*----
 RED reportname
 [CONTROL [IS] | CONTROLS [ARE] [FINAL]
 dataname1 ... [datanameN]]

For example:

-KYWD- 12-*----20---*----30---*----40---*----
 RED STOCK-REPORT
 CONTROLS ARE FINAL WS-LOCATION-CODE
User’s Guide

264 Chapter 11 Create Reports with Report Writer

ugpubb.book Page 264 Tuesday, February 19, 2002 9:39 AM
10 Optionally specify the length and vertical subdivisions of the printed
page, as follows:

a Code the number of printable lines on each page in the PAGE
LIMIT option.

b Code the line number where you want the first control heading
line or detail line of the report body to print on each page in
the FIRST DETAIL option. Remember to leave space at the top of
the page for any report heading and page heading lines when
calculating the first detail line number.

c Code the line number where you want the last detail line of the
report body to print on each page in the LAST DETAIL option.
Remember to leave space at the bottom of the page for any
control break lines, page footing lines, and report footing lines
when calculating the last detail line number.

d Code the line number where you want the last control footing
line to print for each page in the FOOTING option. Remember to
leave space at the bottom of the page for any page footing and
report footing lines when calculating the last control footing
number.

Use the following syntax:

-KYWD- 12-*----20---*----30---*----40---*----
 RED reportname
 [CONTROL [IS] | CONTROLS [ARE] [FINAL]
 dataname1 ... [datanameN]]
 [PAGE [LIMIT IS | LIMITS ARE] number
[LINE|LINES]
 [FIRST DETAIL firstlinenumber]
 [LAST DETAIL lastlinenumber]
 [FOOTING footinglinenumber]].

For example:

-KYWD- 12-*----20---*----30---*----40---*----
 RED STOCK-REPORT
 CONTROLS ARE FINAL WS-LOCATION-CODE
 PAGE LIMIT IS 50
 FIRST DETAIL 10
 LAST DETAIL 40
 FOOTING 47.
User’s Guide

Creating Report Programs 265

ugpubb.book Page 265 Tuesday, February 19, 2002 9:39 AM
Identify the
mock-up

11 Specify the mock-up named in the Application Painter and painted
in the Report Painter with the MOCK keyword, as follows:

-KYWD- 12-*----20---*----30---*----40---*----
 MOCK reportmockupname

For example:

-KYWD- 12-*----20---*----30---*----40---*----
 MOCK STOCKRPT

Identify each
report group

12 Identify each report group with the Program Painter 01 keyword
and the TYPE clause, as follows:

a Code an 01 TYPE statement for each report group. Note that:

• You must assign an identifying data name for the DETAIL
report group, the report body. Identifiers for the other
report groups are optional. You use these identifying data
names in the Procedure Division to refer to the various report
groups.

• The TYPE statements for CONTROL HEADING and CONTROL
FOOTING report groups must indicate the name of control
break field that causes the control break. This control data
name must correspond to a data item specified in the
CONTROLS option of the RED statement.

b For each report group, you can optionally designate the line
number where the first line of the report group prints, using the
LINE option.

c For each report group, you can optionally designate the line
number where the first line of the next report group prints,
using the NEXT GROUP option.

Use the following syntax:

-KYWD- 12-*----20---*----30---*----40---*----
 PAGE HEADING
 PAGE FOOTING
 REPORT HEADING
 01 [identifier] TYPE IS REPORT FOOTING
 CONTROL HEADING [FINAL]|controlname
 CONTROL FOOTING [FINAL]|controlname
 DETAIL
 number
 [LINE [NUMBER IS] PLUS number
 NEXT PAGE]
User’s Guide

266 Chapter 11 Create Reports with Report Writer

ugpubb.book Page 266 Tuesday, February 19, 2002 9:39 AM
 number
 [NEXT GROUP [IS] PLUS number
 NEXT PAGE]

For example:

-KYWD- 12-*----20---*----30---*----40---*----
 MOCK STOCKRPT
 01 TYPE IS REPORT HEADING
 NEXT GROUP IS NEXT PAGE
 01 TYPE IS PAGE HEADING
 NEXT GROUP PLUS 3
 01 TYPE IS CONTROL HEADING WS-LOCATION-CODE
 NEXT GROUP PLUS 1
 01 PART-DETAIL TYPE IS DETAIL
 NEXT GROUP PLUS 1
 01 TYPE IS CONTROL FOOTING WS-LOCATION-CODE
 01 TYPE IS CONTROL FOOTING FINAL
 01 TYPE IS PAGE FOOTING
 01 TYPE IS REPORT FOOTING
 LINE PLUS 2

Map report lines
to the mock-up

13 To map the each report group to the mock-up, follow each TYPE
clause with a MOCKUP clause, as follows:

-KYWD- 12-*----20---*----30---*----40---*----
 MOCKUP LINE[S] linenumber1 [THRU linenumberN]

For example, the following code:

-KYWD- 12-*----20---*----30---*----40---*----
 MOCK STOCKRPT
 01 TYPE IS REPORT HEADING
 NEXT GROUP IS NEXT PAGE
 MOCKUP LINES 1 THRU 5
 01 TYPE IS PAGE HEADING
 NEXT GROUP PLUS 2
 MOCKUP LINES 6 THRU 8
 01 TYPE IS CONTROL HEADING WS-LOCATION-CODE
 MOCKUP LINES 10 THRU 12
 01 PART-DETAIL TYPE IS DETAIL
 NEXT GROUP PLUS 1
 MOCKUP LINE 13
 01 TYPE IS CONTROL FOOTING WS-LOCATION-CODE
 MOCKUP LINES 14 THRU 19
 01 TYPE IS CONTROL FOOTING FINAL
 MOCKUP LINES 20 THRU 24
 01 TYPE IS PAGE FOOTING
 LINE PLUS 2
User’s Guide

Creating Report Programs 267

ugpubb.book Page 267 Tuesday, February 19, 2002 9:39 AM
 MOCKUP LINE 25
 01 TYPE IS REPORT FOOTING
 LINE PLUS 2
 MOCKUP LINE 27

Corresponds to the following mock-up:

****** ***************************TOP OF DATA*************************
=COLS> ----+----1----+----2----+----3----+----4----+----5----+----6---
000100 WONDERFUL WIDGETS INCORPORATED
000200 MID-ATLANTIC
000300 STOCK REPORT
000400 XXXXXX XXX
000500
000600 MID-ATLANTIC
000700 STOCK REPORT
000800 XXXXXX XXX
000900
001000 LOCATION LAST COUNT QUANTITY QUANTITY QUANTITY
001100 DATE IN STOCK ISSUED RECEIVED
001200
001300 XXXXXXXXXXXX 99/99/99 ZZZ,ZZ9 ZZ,ZZ9 ZZZ,ZZ9
001400
001500 --------- --------- ---------
001600 TOTAL BY LOCATION: Z,ZZZ,ZZ9 Z,ZZZ,ZZ9 Z,ZZZ,ZZ9
001700
001800 TOTAL NUMBER OF SALES BY LOCATION: ZZZ,ZZ9
001900
002000 TOTAL WONDERFUL WIDGETS IN STOCK: Z,ZZZ,ZZ9
002100 TOTAL WONDERFUL WIDGETS ISSUED: Z,ZZZ,ZZ9
002200 TOTAL WONDERFUL WIDGETS RECEIVED: Z,ZZZ,ZZ9
002300 TOTAL WONDERFUL WIDGETS SOLD: Z,ZZZ,ZZ9
002400
002500 PAGE ZZZ9
002600
002700 ***** END OF REPORT *****
002800
002900

Map report fields
to the mock-up

14 For the applicable report groups, indicate which data items supply
values to output fields with the SOURCE statement. Use the
following guidelines:

• Map the data items within the report group from left to right,
top to bottom, as they will appear on the printed report.

• Include picture clauses if multiple fields are strung together on
the mock-up. A PIC clause indicates the next matching COBOL
User’s Guide

268 Chapter 11 Create Reports with Report Writer

ugpubb.book Page 268 Tuesday, February 19, 2002 9:39 AM
picture in the mock-up is the COBOL picture for this data item.
See also Special Considerations.

• Optionally print spaces when the value of the field is zero by
specifying the BLANK WHEN ZERO option.

• Optionally justify the field value with the JUSTIFIED RIGHT
option.

• Optionally print the value of the field only when it changes
value with the CHANGE INDICATE option.

• Optionally print the value of the field only on the first
occurrence of the report group after a control break or a page
advance with the GROUP INDICATE option.

Use the following syntax:

-KYWD- 12-*----20---*----30---*----40---*----
 SOURCE [IS] dataname [PIC picclause]
 [BLANK [WHEN] ZERO]
 [JUSTIFIED|JUST [RIGHT]
 [CHANGE INDICATE|GROUP INDICATE]

For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 01 TYPE IS REPORT HEADING
 NEXT GROUP IS NEXT PAGE
 MOCKUP LINES 1 THRU 5
 SOURCE IS WS-DATE
 01 TYPE IS PAGE HEADING
 NEXT GROUP PLUS 3
 MOCKUP LINES 6 THRU 8
 SOURCE IS WS-DATE
 01 PART-DETAIL TYPE IS DETAIL
 NEXT GROUP PLUS 1
 MOCKUP LINE 13
 SOURCE WS-LOCATION-CODE GROUP INDICATE
 SOURCE WS-LAST-COUNT-MONTH
 SOURCE WS-LAST-COUNT-DAY
 SOURCE WS-LAST-COUNT-YEAR
 SOURCE WS-QTY-IN-STOCK
 SOURCE WS-QTY-ISSUED
 SOURCE WS-QTY-RECEIVED
 01 TYPE IS PAGE FOOTING
 LINE PLUS 2
 MOCKUP LINE 24
 SOURCE IS PAGE-COUNTER
User’s Guide

Creating Report Programs 269

ugpubb.book Page 269 Tuesday, February 19, 2002 9:39 AM
15 Define any non-printing detail items that you want Report Writer to
sum and total for control breaks, such as an employee count or the
number of sales in a given location, with the REFERENCE statement.
A REFERENCE field value never displays when the detail line prints.
If you code a corresponding SUM statement (see the next step), APS
adds the field value to an internal sum accumulator.

Name the data item and define its format, as follows:

REFERENCE [IS] dataname PIC picclause

For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 01 PART-DETAIL TYPE IS DETAIL
 NEXT GROUP PLUS 1
 MOCKUP LINE 13
 SOURCE WS-LOCATION-CODE GROUP INDICATE
 SOURCE WS-LAST-COUNT-MONTH
 SOURCE WS-LAST-COUNT-DAY
 SOURCE WS-LAST-COUNT-YEAR
 SOURCE WS-QTY-IN-STOCK
 SOURCE WS-QTY-ISSUED
 SOURCE WS-QTY-RECEIVED
 REFERENCE WS-NO-OF-SALES PIC 9999

See also Special Considerations.

16 For the CONTROL FOOTING report groups, sum the data items,
previously identified with a SOURCE or REFERENCE statement, for
control breaks with the SUM statement. Use the following
guidelines:

• Sum the data items within the report group from left to right,
top to bottom, as they will appear on the printed report.

• If the report has more than one detail line, use the UPON option
to name the line where the summing takes place.

• To override the APS default of resetting SUM accumulators to
zero after each control break, use the RESET option to do a
running total and specify which control break should reset the
accumulator.

• To automatically move the value in the Report Writer field
accumulator to a field you can reference in the Procedure
Division, for example, to test the field or do further calculations,
User’s Guide

270 Chapter 11 Create Reports with Report Writer

ugpubb.book Page 270 Tuesday, February 19, 2002 9:39 AM
create the field by naming it in the DATA-NAME fieldname
option.

• Include a picture clause for SUM statements if multiple fields are
strung together on the mock-up. A PIC clause indicates the next
matching COBOL picture in the mock-up is the COBOL picture
for this data item. See also Special Considerations.

Use the following syntax:

SUM dataname [dataname] ...
 [UPON detlineidentifier [detlineidentifier] ...]
 [RESET [FINAL] controlname]
 [DATA-NAME fieldname]
 [PICTURE picclause]

For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 MOCK STOCKRPT

 01 TYPE IS REPORT HEADING
 NEXT GROUP IS NEXT PAGE
 MOCKUP LINES 1 THRU 5
 SOURCE WS-DATE

 01 TYPE IS PAGE HEADING
 NEXT GROUP PLUS 3
 MOCKUP LINES 6 THRU 8
 SOURCE WS-DATE

 01 TYPE IS CONTROL HEADING WS-LOCATION-CODE
 MOCKUP LINES 10 THRU 12

 01 PART-DETAIL TYPE IS DETAIL
 NEXT GROUP PLUS 1
 MOCKUP LINE 13
 SOURCE WS-LOCATION-CODE GROUP INDICATE
 SOURCE WS-LAST-COUNT-MONTH
 SOURCE WS-LAST-COUNT-DAY
 SOURCE WS-LAST-COUNT-YEAR
 SOURCE WS-QTY-IN-STOCK
 SOURCE WS-QTY-ISSUED
 SOURCE WS-QTY-RECEIVED
 REFERENCE WS-NO-OF-SALES PIC 9999

 01 TYPE IS CONTROL FOOTING WS-LOCATION-CODE
 MOCKUP LINES 14 THRU 18
 MOCKUP LINES 19 THRU 22
User’s Guide

Creating Report Programs 271

ugpubb.book Page 271 Tuesday, February 19, 2002 9:39 AM
 SUM WS-QTY-IN-STOCK
 SUM WS-QTY-ISSUED
 SUM WS-QTY-RECEIVED
 SUM WS-NO-OF-SALES

 01 TYPE IS CONTROL FOOTING FINAL
 MOCKUP LINES 19 THRU 22
 SUM WS-QTY-IN-STOCK
 SUM WS-QTY-ISSUED
 SUM WS-QTY-RECEIVED
 SUM WS-NO-OF-SALES

 01 TYPE IS PAGE FOOTING
 LINE PLUS 2
 MOCKUP LINE 24
 SOURCE IS PAGE-COUNTER

 01 TYPE IS REPORT FOOTING
 LINE PLUS 3
 MOCKUP LINE 26

Code the report
logic

17 Code the Procedure Division logic under the NTRY (or PROC)
keyword to produce and generate the report, as follows:

a Initialize all report counters and set up control heading and
footing items with the INITIATE statement.

b Process the detail lines with a GENERATE statement. If the
report has multiple detail lines, code multiple GENERATE
statements.

c End report processing with the TERMINATE statement.

Use the following structure:

-KYWD- 12-*----20---*----30---*----40---*----50---
 NTRY
 .
 .
 OPEN INPUT filename1
 ... OUTPUT filename2
 .
 .
 INITIATE reportname
 .
 .
 IF
 GENERATE detlineidentifier
 .
User’s Guide

272 Chapter 11 Create Reports with Report Writer

ugpubb.book Page 272 Tuesday, February 19, 2002 9:39 AM
 .
 TERMINATE reportname
 .
 .
 CLOSE filename1 filename2

For example:

NTRY
 OPEN INPUT INPUT-FILE
 ...OUTPUT REPORT-OUTPUT-FILE
 ACCEPT WS-DATE-HOLD FROM DATE
 MOVE WS-DATE-YY-X TO WS-DATE-YY
 MOVE WS-DATE-MM-X TO WS-DATE-MM
 MOVE WS-DATE-DD-X TO WS-DATE-DD
 INITIATE STOCK-REPORT
 REPEAT
 READ INPUT-FILE INTO WS-PART-STOCK-REC
 UNTIL AT END ON INPUT-FILE
 GENERATE DETAIL-LINE
 TERMINATE STOCK-REPORT
 CLOSE INPUT-FILE
 ... REPORT-OUTPUT-FILE

18 Repeat steps 7 through 17 for each report named in the File Section
REPORT clause.

Special Considerations
• If you define a report record with the WRITE ROUTINE clause, the

default record size is 248. If your RED keyword statement includes
the CODE clause, the default value is 250. For more information, see
the APS Reference.

• Report Writer treats each report group specified in the TYPE clause
as a unit and always prints the entire group on one page--it never
begins the group on one page and completes it on another.

• You can add Working-Storage entries before the I/O description at
the beginning of the program, after the output record description,
after an 01 TYPE statements, and after yout Procedure Division
code.

• When identifing controls in the CONTROL clause, dataname must be
an elementary data name. In the following example, B cannot be
used as a control variable because it is a group data item. To make B
User’s Guide

Creating Report Programs 273

ugpubb.book Page 273 Tuesday, February 19, 2002 9:39 AM
into an elementary data item, use the REDEFINES clause as shown
below:

WS01 A PIC X(2).
WS01 B.
 02 B-1 PIC 9(4).
 02 B-2 PIC 9(4).
WS01 B-REDEF REDEFINES B PIC X(8).
 .
 .
 .
RED TEST-REPORT
 CONTROLS ARE A B-REDEF

• APS creates an internal SUM accumulator field for each data item
specified. The name of this field is dataname-nnnn, where nnnn is a
4-digit number. Each time the detail line containing the data item
prints, APS adds its value to the accumulator. APS clears the
accumulators either after each control break (the default) or after a
control break you specifiy with the RESET option.

• If a data item contains a PIC clause in a SOURCE or SUM statement,
it indicates that the next matching COBOL picture in the mock-up is
the COBOL picture for the statement. APS compares it with an equal
number of the next unassigned characters. If no match occurs, the
comparison moves one position to the right until a match is found.
If no match is found, an error message is printed. For example:

Report mock-up:

000001 A TEST PROGRAM
000002
000003 FIELD-1 FIELD-2 FIELD-3
000004 XXXX XXXX XXXX

Report program:

-KYWD- 12-*----20---*----30---*----40---*----
 01 DET-LINE TYPE DETAIL LINE.
 MOCKUP LINE 4
 SOURCE DATA-1
 SOURCE DATA-2
 SOURCE DATA-3 PIC X(2)
 SOURCE DATA-4

Report Writer matches DATA-1 and DATA-2 directly to the mock-up.
It then matches the PIC clause in the SOURCE statement for DATA-3
to the first two X characters under FIELD-3, and the two remaining
User’s Guide

274 Chapter 11 Create Reports with Report Writer

ugpubb.book Page 274 Tuesday, February 19, 2002 9:39 AM
X characters to DATA-4. If you omit the PIC clause on the DATA-3
SOURCE statement, an error occurs. If you omit the DATA-4 SOURCE
statement, APS considers the XX a literal, because there are no
source statements remaining.

• When you code a REFERENCE statement, the PIC clause must match
the PIC clause in the record description. For example:

-KYWD- 12-*----20---*----30---*----40---*----
 01 COST-DETAIL TYPE DETAIL
 MOCKUP LINE 9
 SOURCE WS-DEPT
 SOURCE WS-EMPLOYEE
 SOURCE WS-CITY
 REFERENCE EMP-CTR PIC 999
 01 TYPE CONTROL FOOTING
 MOCKUP LINE 9
 SOURCE WS-DEPT
 SUM EMP-CTR
 WS01 EMP-CTR PIC 999 VALUE 1.

If one of the PIC clauses were PIC 9(3), Report Writer would not find
a match.

• In a REFERENCE statement, the data item referenced must be
defined in Working-Storage with a VALUE clause. The value in the
VALUE clause tells Report Writer the increment to add to the
internal accumulator each time the detail line prints. In the previous
example, APS adds 1 to the internal accumulator whenever the
detail line prints.

Generate Multiple SUM or SOURCE
Statements

Instead of coding individual statements to source or sum sequential
suffixed data items or array elements, APS provides an iterative
expression feature that lets you code only one SOURCE or SUM
statement, which generates multiple statements.
User’s Guide

Generate Multiple SUM or SOURCE Statements 275

ugpubb.book Page 275 Tuesday, February 19, 2002 9:39 AM
Suffixed Data Elements

The iterative expression syntax for suffixed data elements is:

dataitem-#startnum[/endnum[/incnum]]

where the pound sign (#) indicates the starting number of an iteration;
startnum and endumn indicate the range of the iteration. The slash (/)
between them generates a THRU. The incnum is the number by which
the iteration is incremented (default is 1); its leading slash generates a
BY. For example:

SOURCE MONTH-#1/6 BLANK WHEN ZERO

generates an iteration of six SOURCE statements, suffixed numerically, 1
through 6, for example, MONTH-1 through MONTH-6. If you specify
only one number, the iteration assumes the starting number to be 1. For
example, SOURCE MONTH-#6 is equivalent to SOURCE MONTH-#1/6.

Without the iterative expression, you would code the above statement
as follows:

SOURCE MONTH-1 BLANK WHEN ZERO
SOURCE MONTH-2 BLANK WHEN ZERO
SOURCE MONTH-3 BLANK WHEN ZERO
SOURCE MONTH-4 BLANK WHEN ZERO
SOURCE MONTH-5 BLANK WHEN ZERO
SOURCE MONTH-6 BLANK WHEN ZERO

In the following example, the four SUM statements:

SUM MONTH-9-DATA
SUM MONTH-10-DATA
SUM MONTH-11-DATA
SUM MONTH-12-DATA

can instead be coded as:

SUM MONTH-#9/12-DATA

The following example increments an iteration of SOURCE statements
by 2 instead of the default 1:

SOURCE ELEMENT-#6/12/2

which generates:

SOURCE ELEMENT-6
User’s Guide

276 Chapter 11 Create Reports with Report Writer

ugpubb.book Page 276 Tuesday, February 19, 2002 9:39 AM
SOURCE ELEMENT-8
SOURCE ELEMENT-10
SOURCE ELEMENT-12

The PIC clause for each SUM or SOURCE statement generated by the
iterative expression is taken from the mock-up. APS matches the mock-
up and detail line data item descriptions as the increment statements
generate.

Array Items
The iterative expression syntax for a complex array is:

arrayitem (#startnum1[/endnum1[/incnum1]][)]
 [,#startnum2[/endnum2[/incnum2]]][)]
 [,#startnum3[/endnum3[/incnum3]]])

Parentheses indicate an array. Use up to three # symbols to indicate
three dimensions of an array. Separate the subscript ranges with
commas. All of the symbols used for generating suffixed data items,
above, apply to each array range.

Each dimension is described by a separate Data Division entry with an
OCCURS clause.

The SOURCE statements in the following example, which reference a 2
by 3 array:

SOURCE ARRAY-ITEM (1, 1)
SOURCE ARRAY-ITEM (1, 2)
SOURCE ARRAY-ITEM (1, 3)
SOURCE ARRAY-ITEM (2, 1)
SOURCE ARRAY-ITEM (2, 2)
SOURCE ARRAY-ITEM (2, 3)

can, instead, be coded as:

SOURCE ARRAY-ITEM (#2, #3)

The following example produces SUM statements for each element of a
three dimensional array of 3 by 2 by 3.

SUM TABLE ELEMENT (#3, #2, #3)
User’s Guide

Mapping Considerations 277

ugpubb.book Page 277 Tuesday, February 19, 2002 9:39 AM
The following iterative expressions are examples of ranges within a one
dimensional array:

SUM EXT-SALES-DOLLARS (#1/3) PIC Z,ZZ9
 SUM QTR-1-SALES-DOLLARS PIC ZZ,ZZ9
 SUM EXT-SALES-DOLLARS (#4/6) PIC Z,ZZ9
 SUM QTR-2-SALES-DOLLARS PIC ZZ,ZZ9
 SUM EXT-SALES-DOLLARS (#7/9) PIC Z,ZZ9
 SUM QTR-3-SALES-DOLLARS PIC ZZ,ZZ9
 SUM EXT-SALES-DOLLARS (#10/12) PIC Z,ZZ9
 SUM QTR-4-SALES-DOLLARS PIC ZZ,ZZ9
 SUM YR-SALES-DOLLARS PIC $$$$,$$$

Mapping Considerations
The sequence in which mock-up fields are matched with the data item
descriptions is the same as a page of text is read--from left to right
across each line of the mock-up starting with the top line and
continuing to the bottom.

APS matches the report mock-up fields to the data item description
entries in your program according to the following rules:

• APS considers the following to be literals:

• The COBOL picture character A.

• Any one or more consecutive non-space, non-picture characters.

• Any single COBOL picture character, that is preceded and
followed by a space. Exception to this rule: 9 and X.

• A string of hyphens because of its frequent use for underlining.

• APS considers a single COBOL picture character, such as -, X, Z, or 9,
that is embedded in a string of non-blank, non-picture characters as
part of a literal. For example, the following are literals:

1979
WXYZ
EXTRA
WIZARD
User’s Guide

278 Chapter 11 Create Reports with Report Writer

ugpubb.book Page 278 Tuesday, February 19, 2002 9:39 AM
and the following are pictures beside literals:

#99 Literal is #, PIC is 99.
l999 Literal is l, PIC is 999.
Section-999 Literal is SECTION, PIC is -999.

• APS considers any legal COBOL picture longer than one character to
be a COBOL picture, except for the letter S and the hyphen (-), and
matches it to the next data item description in the program.

• APS generates a VALUE statement for each literal in the mockup,
and does not match the literal with the data item descriptions in the
program.

• APS considers any consecutive PIC characters in the mock-up as one
PIC character string, unless the string is matched with PIC clauses in
multiple, consecutive SOURCE statements.

• APS assigns each PIC character string as the PIC for the next
sequential data item description, unless the next description
contains a PIC clause.

• When a data item description contains a PIC clause, APS compares it
with an equal number of characters in the mock-up, starting with
the next sequential, unassigned character in the mock-up.

• When comparing a data item description entry with a PIC clause to
an equal number of characters in the mock-up and a non-match
occurs, APS continues the comparison by moving one position to the
right until it finds a match. APS considers the non-matched
characters from this process to be a literal, and generates a VALUE
entry that precedes the data item description with the PIC clause
that initiated the comparison.

• When a PIC clause in a data item description does not match any
series of mock-up characters from the start of a comparison to the
end of the mock-up, APS terminates processing and generates an
error message.
User’s Guide

Sample Program 279

ugpubb.book Page 279 Tuesday, February 19, 2002 9:39 AM
Sample Program
This topic includes the report mock-up, complete program, the
generated source code, and the final printed report for the sample
program illustrated in the procedure for Creating Report Programs.

Program Painter
source

KYWD 12--+--20--+---+-30+---+---40--+---+-50+---+---
 IO INPUT-FILE ASSIGN TO UT-S-FILEIN.
 IO REPORT-OUTPUT-FILE ASSIGN TO UT-S-REPTOUT.

 FD INPUT-FILE
 LABEL RECORDS ARE STANDARD
 BLOCK CONTAINS 0 CHARACTERS.
 01 PART-STOCK-REC PIC X(80).

 FD REPORT-OUTPUT-FILE
 LABEL RECORDS ARE STANDARD
 REPORT IS STOCK-REPORT.

 WS WS-PART-STOCK-REC.
 05 WS-LOCATION-CODE
 ... PIC X(12) VALUE SPACES.
 05 WS-LAST-COUNT-DATE.
 10 WS-LAST-COUNT-MONTH PIC 99 VALUE 0.
 10 WS-LAST-COUNT-DAY PIC 99 VALUE 0.
 10 WS-LAST-COUNT-YEAR PIC 99 VALUE 0.
 05 WS-QTY-IN-STOCK PIC 9(6) VALUE 0.
 05 WS-QTY-ISSUED PIC 9(6) VALUE 0.
 05 WS-QTY-RECEIVED PIC 9(6) VALUE 0.
 05 WS-NO-OF-SALES PIC 9(4) VALUE 0.
 05 FILLER
 ...PIC X(40) VALUE SPACES.
 WS WS-DATE.
 05 WS-DATE-MM PIC 9(2).
 05 WS-DATE-DD PIC 9(2).
 05 WS-DATE-YY PIC 9(2).
 WS WS-DATE-HOLD.
 05 WS-DATE-YY-X PIC 9(2).
 05 WS-DATE-MM-X PIC 9(2).
 05 WS-DATE-DD-X PIC 9(2).
 RED STOCK-REPORT
 CONTROLS ARE FINAL WS-LOCATION-CODE
 PAGE LIMIT IS 50
 FIRST DETAIL 10
 LAST DETAIL 40
 FOOTING 47.
User’s Guide

280 Chapter 11 Create Reports with Report Writer

ugpubb.book Page 280 Tuesday, February 19, 2002 9:39 AM
 MOCK STCKRPT
 01 TYPE IS REPORT HEADING NEXT GROUP
 NEXT PAGE
 MOCKUP LINES 1 THRU 6
 SOURCE WS-DATE

 01 TYPE IS PAGE HEADING.
 MOCKUP LINES 7 THRU 9
 SOURCE WS-DATE

 01 TYPE IS CONTROL HEADING WS-LOCATION-CODE.
 MOCKUP LINES 10 THRU 13

 01 DETAIL-LINE TYPE IS DETAIL.
 MOCKUP LINE 14
 SOURCE WS-LOCATION-CODE GROUP INDICATE
 SOURCE WS-LAST-COUNT-MONTH PIC 99
 SOURCE WS-LAST-COUNT-DAY PIC 99
 SOURCE WS-LAST-COUNT-YEAR PIC 99
 SOURCE WS-QTY-IN-STOCK
 SOURCE WS-QTY-ISSUED
 SOURCE WS-QTY-RECEIVED
 REFERENCE WS-NO-OF-SALES PIC ZZZ9

 01 TYPE IS CONTROL FOOTING WS-LOCATION-CODE.
 MOCKUP LINES 15 THRU 21
 SUM WS-QTY-IN-STOCK
 SUM WS-QTY-ISSUED
 SUM WS-QTY-RECEIVED
 SUM WS-NO-OF-SALES

 01 TYPE IS CONTROL FOOTING FINAL.
 MOCKUP LINES 22 THRU 30
 SUM WS-QTY-IN-STOCK
 SUM WS-QTY-ISSUED
 SUM WS-QTY-RECEIVED
 SUM WS-NO-OF-SALES

 01 TYPE IS PAGE FOOTING.
 MOCKUP LINE 31
 SOURCE PAGE-COUNTER

 01 TYPE IS REPORT FOOTING LINE PLUS 2.
 MOCKUP LINES 32 THRU 33

 NTRY
 OPEN INPUT INPUT-FILE
 ...OUTPUT REPORT-OUTPUT-FILE
User’s Guide

Sample Program 281

ugpubb.book Page 281 Tuesday, February 19, 2002 9:39 AM
 ACCEPT WS-DATE-HOLD FROM DATE
 MOVE WS-DATE-YY-X TO WS-DATE-YY
 MOVE WS-DATE-MM-X TO WS-DATE-MM
 MOVE WS-DATE-DD-X TO WS-DATE-DD
 INITIATE STOCK-REPORT
 REPEAT
 READ INPUT-FILE INTO WS-PART-STOCK-REC
 UNTIL AT END ON INPUT-FILE
 GENERATE DETAIL-LINE
 TERMINATE STOCK-REPORT
 CLOSE INPUT-FILE
 ... REPORT-OUTPUT-FILE
******************* BOTTOM OF DATA *****************

Generated source

 % &AP-GEN-VER = 3000
 % &AP-PGM-D = "STOCK1"
 % &AP-GEN-DC-TARGET = "MVS"
 % &AP-TP-ENTRY-KYWD-SEEN = 1
 % &AP-FILE-CONTROL-SEEN = 1

 IDENTIFICATION DIVISION.
 PROGRAM-ID. STOCK1.
 AUTHOR. AP-SYSTEM GENERATED.
 DATE-WRITTEN. 910125.
 DATE-COMPILED. &COMPILETIME.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.
 SOURCE-COMPUTER. &SYSTEM.
 OBJECT-COMPUTER. &SYSTEM.

 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT INPUT-FILE ASSIGN TO UT-S-FILEIN.
 SELECT REPORT-OUTPUT-FILE ASSIGN TO UT-S-REPTOUT.

 DATA DIVISION.

 FILE SECTION.

 FD INPUT-FILE
 LABEL RECORDS ARE STANDARD
 BLOCK CONTAINS O CHARACTERS.
 01 PART-STOCK-REC PIC X(80).

User’s Guide

282 Chapter 11 Create Reports with Report Writer

ugpubb.book Page 282 Tuesday, February 19, 2002 9:39 AM
 FD REPORT-OUTPUT-FILE
 LABEL RECORDS ARE STANDARD
 REPORT IS STOCK-REPORT.

 WORKING-STORAGE SECTION.
 01 WS-PART-STOCK-REC.
 05 WS-LOCATION-CODE PIC X(12) VALUE SPACES.
 05 WS-LAST-COUNT-DATE.
 10 WS-LAST-COUNT-MONTH PIC 99 VALUE O.
 10 WS-LAST-COUNT-DAY PIC 99 VALUE O.
 10 WS-LAST-COUNT-YEAR PIC 99 VALUE O.
 05 WS-QTY-IN-STOCK PIC 9(6) VALUE O.
 05 WS-QTY-ISSUED PIC 9(6) VALUE O.
 05 WS-QTY-RECEIVED PIC 9(6) VALUE O.
 05 WS-NO-OF-SALES PIC 9(4) VALUE O.
 05 FILLER PIC X(40) VALUE SPACES.
 01 WS-DATE.
 05 WS-DATE-MM PIC 9(2).
 05 WS-DATE-DD PIC 9(2).
 05 WS-DATE-YY PIC 9(2).
 01 WS-DATE-HOLD.
 05 WS-DATE-YY-X PIC 9(2).
 05 WS-DATE-MM-X PIC 9(2).
 05 WS-DATE-DD-X PIC 9(2).

 REPORT SECTION.
 RED STOCK-REPORT
 CONTROLS ARE FINAL, WS-LOCATION-CODE
 PAGE LIMIT IS 50
 FIRST DETAIL 10
 LAST DETAIL 40
 FOOTING 47.

 WONDERFUL WIDGETS INCORPORATED

 STOCK REPORT

 XXXXXX XXX

 MID-ATLANTIC
 STOCK REPORT
 XXXXXX XXX

LOCATION LAST COUNT QUANTITY IN QUANTITY QUANTITY
 DATE STOCK ISSUED RECEIVED

XXXXXXXXXXXX 99/99/99 ZZZ,ZZ9 ZZZ,ZZ9 ZZZ,ZZ9

User’s Guide

Sample Program 283

ugpubb.book Page 283 Tuesday, February 19, 2002 9:39 AM
 --------- --------- ---------
TOTAL BY LOCATION: Z,ZZZ,ZZ9 Z,ZZZ,ZZ9 Z,ZZZ,ZZ9

TOTAL NUMBER OF SALES BY LOCATION: ZZZ,ZZ9

TOTAL WONDERFUL WIDGETS IN STOCK: Z,ZZZ,ZZ9

TOTAL WONDERFUL WIDGETS ISSUED: Z,ZZZ,ZZ9

TOTAL WONDERFUL WIDGETS RECEIVED: Z,ZZZ,ZZ9

TOTAL WONDERFUL WIDGETS SOLD: Z,ZZZ,ZZ9

 PAGE ZZZ9
 ***** END OF REPORT *****

01 TYPE IS REPORT HEADING NEXT GROUP NEXT PAGE.
MOCKUP LINES 1 THRU 6
SOURCE WS-DATE

01 TYPE IS PAGE HEADING.
MOCKUP LINES 7 THRU 9
SOURCE WS-DATE

01 TYPE IS CONTROL HEADING WS-LOCATION-CODE.
MOCKUP LINES 10 THRU 13

01 DETAIL-LINE TYPE IS DETAIL.
MOCKUP LINE 14
SOURCE WS-LOCATION-CODE GROUP INDICATE
SOURCE WS-LAST-COUNT-MONTH PIC 99
SOURCE WS-LAST-COUNT-DAY PIC 99
SOURCE WS-LAST-COUNT-YEAR PIC 99
SOURCE WS-QTY-IN-STOCK
SOURCE WS-QTY-ISSUED
SOURCE WS-QTY-RECEIVED
REFERENCE WS-NO-OF-SALES PIC zzz9
01 TYPE IS CONTROL FOOTING WS-LOCATION-CODE.
MOCKUP LINES 15 THRU 21
SUM WS-QTY-IN-STOCK
SUM WS-QTY-ISSUED
SUM WS-QTY-RECEIVED
SUM WS-NO-OF-SALES
01 TYPE IS CONTROL FOOTING FINAL.
MOCKUP LINES 22 THRU 30
SUM WS-QTY-IN-STOCK
SUM WS-QTY-ISSUED
SUM WS-QTY-RECEIVED
User’s Guide

284 Chapter 11 Create Reports with Report Writer

ugpubb.book Page 284 Tuesday, February 19, 2002 9:39 AM
SUM WS-NO-OF-SALES

01 TYPE IS PAGE FOOTING.
MOCKUP LINE 31
SOURCE PAGE-COUNTER

01 TYPE IS REPORT FOOTING.
MOCKUP LINES 32 THRU 33

$TP-ENTRY
 OPEN INPUT INPUT-FILE
 ...OUTPUT REPORT-OUTPUT-FILE
 ACCEPT WS-DATE-HOLD FROM DATE
 MOVE WS-DATE-YY-X TO WS-DATE-YY
 MOVE WS-DATE-MM-X TO WS-DATE-MM
 MOVE WS-DATE-DD-X TO WS-DATE-DD
 INITIATE STOCK-REPORT
 REPEAT
 READ INPUT-FILE INTO WS-PART-STOCK-REC
 UNTIL AT END ON INPUT-FILE
 GENERATE DETAIL-LINE
 TERMINATE STOCK-REPORT
 CLOSE INPUT-FILE
 ... REPORT-OUTPUT-FILE

Printed report

 WONDERFUL WIDGETS INCORPORATED

 STOCK REPORT

 01/25/91

 MID-ATLANTIC
 STOCK REPORT

LOCATION LAST COUNT QUANTITY IN QUANTITY QUANTITY
 DATE STOCK ISSUED RECEIVED

ALEXANDRIA 05/01/90 111 222 333
 06/01/90 111 222 333
 07/01/90 111 222 333
 08/01/90 111 222 333
 09/01/90 111 222 333
 10/01/90 111 222 333
 11/01/90 111 222 333
User’s Guide

Sample Program 285

ugpubb.book Page 285 Tuesday, February 19, 2002 9:39 AM
 _________ _________ _________
TOTAL BY LOCATION: 777 1,554 2,331

TOTAL NUMBER OF SALES BY LOCATION: 3,108

 LAST COUNT QUANTITY IN QUANTITY QUANTITY
LOCATION DATE STOCK ISSUED RECEIVED

BALTIMORE 06/01/90 11 22 33
 08/01/90 11 22 33
 09/01/90 11 22 33
 10/01/90 11 22 33
 11/01/90 11 22 33
 _________ _________ _________
TOTAL BY LOCATION: 55 110 165

TOTAL NUMBER OF SALES BY LOCATION: 220

 PAGE 1
 MID-ATLANTIC
 STOCK REPORT
 01/25/91

 LAST COUNT QUANTITY IN QUANTITY QUANTITY
LOCATION DATE STOCK ISSUED RECEIVED

ROCKVILLE 05/01/90 11 22 33
 06/01/90 11 22 33
 07/01/90 11 22 33
 08/01/90 11 22 33
 09/01/90 11 22 33
 10/01/90 11 22 33
 11/01/90 11 22 33
 _________ _________ _________
TOTAL BY LOCATION: 77 154 231

TOTAL NUMBER OF SALES BY LOCATION: 308

 LAST COUNT QUANTITY IN QUANTITY QUANTITY
LOCATION DATE STOCK ISSUED RECEIVED

WASHINGTON 06/01/90 111,111 222,222 333,333
 07/01/90 111,111 222,222 333,333
 08/01/90 111,111 222,222 333,333
 09/01/90 111,111 222,222 333,333
 10/01/90 111,111 222,222 333,333
 11/01/90 111,111 222,222 333,333
 _________ _________ _________
User’s Guide

286 Chapter 11 Create Reports with Report Writer

ugpubb.book Page 286 Tuesday, February 19, 2002 9:39 AM
TOTAL BY LOCATION: 666,666 1,333,332 1,999,998

TOTAL NUMBER OF SALES BY LOCATION: 26,664

 PAGE 2

 MID-ATLANTIC
 STOCK REPORT
 01/25/91

TOTAL WONDERFUL WIDGETS IN STOCK: 667,575
TOTAL WONDERFUL WIDGETS ISSUED: 1,335,150
TOTAL WONDERFUL WIDGETS RECEIVED: 2,002,725
TOTAL WONDERFUL WIDGETS SOLD: 30,300

 PAGE 3
 ***** END OF REPORT *****
User’s Guide

287

ugpubb.book Page 287 Tuesday, February 19, 2002 9:39 AM
12 Using the APS/ENDEVOR
Interface

This chapter contains the following sections:

• APS/ENDEVOR Overview

• Using APS/ENDEVOR

APS/ENDEVOR Overview
Version control

for APS
applications

The APS/ENDEVOR Interface is an interface between Micro Focus’s APS
for z/OS and LEGENT Corporation’s ENDEVOR/MVS software
management product. The interface lets you manage your APS
application components--called elements in ENDEVOR--using ENDEVOR
from within APS for z/OS.

APS/ENDEVOR
tasks

Specifically, you can do the following:

• Store and retrieve multiple revisions of an APS application
component.

APS/ENDEVOR stores all revisions of an application component in a
single controlled member in the ENDEVOR/MVS library. You can
retrieve any revision at any time.

• Manage all components of an application as one group.

For an application component that references all components of an
application, APS/ENDEVOR manages all its referenced components
as a group. You can add, update or sign in, and retrieve and
signout all components of an application with one request.

• Resolve access conflicts.

When you retrieve a revision to modify it, you can sign it out to
prevent other developers from simultaneously changing that
revision.
User’s Guide

288 Chapter 12 Using the APS/ENDEVOR Interface

ugpubb.book Page 288 Tuesday, February 19, 2002 9:39 AM
• Display the history of source code changes.

You can display just the statements that differ between a specific
revision and the preceding one, instead of comparing revisions line
by line. Alternatively, you can display all the inserted and deleted
statements in all revisions of a component.

• Display component information.

You can display log information on all revisions of a component,
including creators and creation dates, the origin of the base
revision, and when it was last generated and retrieved, and by
whom.

Supported actions
and displays

The APS/ENDEVOR Interface lets you use the basic ENDEVOR/MVS action
and display functions that you are likely to need. For those functions
not supported by the interface, you can invoke ENDEVOR/MVS from
within APS. This document discusses only those ENDEVOR/MVS
functions relevant to understanding and using the interface.

The APS/ENDEVOR Interface provides options that correspond to
ENDEVOR/MVS actions and displays, as follows. Each option works in
APS just as it works in ENDEVOR.

Checkin The check in action adds to or updates the ENDEVOR library with an APS
component from an APS Project.Group. Alternatively, you can sign in a
component at checkin, without adding to or updating the library.

The first time you check in a component from your APS Project.Group,
APS/ENDEVOR creates a controlled member that stores the component,
and all subsequent revisions of that component, in the ENDEVOR/MVS
library. The first checked in component is the first revision. It has the
version number number 01 and the level number 00, expressed as 01.00.

Interface Option ENDEVOR/MVS Function

Checkin Add/Update or Signin

Checkout Retrieve and, by default, Signout

Summary Report Summary Element Display

Master Report Master Element Display

Browse Report Browse Element Display

View Differences Report Changes Element Display

History Report History Element Display
User’s Guide

APS/ENDEVOR Overview 289

ugpubb.book Page 289 Tuesday, February 19, 2002 9:39 AM
A controlled member contains the following information:

• The complete text of the latest revision of the component.

• The modified text, or set of deltas, from all prior revisions. When a
user checks out any prior revision, ENDEVOR reconstructs it from the
latest revision and the deltas of the prior revisions.

• Log information on all revisions that you can display in reports.

APS submits a batch job to check in the Program (PG) and Screen (SC)
component types; for all other component types, APS executes a job
immediately.

Checkout The checkout function retrieves and, by default, signs out a revision
from a controlled member of the ENDEVOR library to an APS
Project.Group so that you can modify it.

By signing out a revision, you prevent anyone else from modifying it.
Conversely, you cannot checkout a revision that has been checked out
by some one else. You can, however, override the signout, assuming you
have authority to do so. Otherwise, the signout is released when the
component is moved or transferred to another Stage.

Reports APS/ENDEVOR provides reports that help you monitor the changes
made to APS components in the ENDEVOR library.

The View Differences report lets you display the source statements that
differ between a specific component revision and the preceding one.

The four View Print reports let you display log and source change
information on one or all revisions of a component.

Report Description

Browse • Log information on all revisions, including creators;
creation dates; number of statements; CCIDs;
comments; when the component was last
generated and retrieved, and by whom.

• All statements in the specified revision, marked
with the level number at which they were first
inserted.
User’s Guide

290 Chapter 12 Using the APS/ENDEVOR Interface

ugpubb.book Page 290 Tuesday, February 19, 2002 9:39 AM
For information on ENDEVOR/MVS, see the ENDEVOR/MVS User’s Guide
and the ENDEVOR/MVS Administrator’s Guide.

Using APS/ENDEVOR
This section provides instructions for accessing the interface, specifying
the APS location for checkins and checkouts, executing checkins and
checkouts, and running reports.

Accessing APS/ENDEVOR Options
1 To access the APS/ENDEVOR Interface, select option 5, Version

Control System, from the APS Main Menu. The APS/ENDEVOR
Version Control Menu displays.

History • Log information on all revisions, including creators;
creation dates; number of statements; CCIDs;
comments; when the component was last
generated and retrieved, and by whom.

• All inserted and deleted statements that ever
existed in all revisions of the component, marked
with the level number at which they were inserted
or deleted.

Master • Information on a component, including its
processor group; the last action performed against
it; its current signout status; when it was last
modified and generated, and by whom; the origin
of its base revision; who moved or transferred the
component from a Stage, and when.

Summary • Log information on all revisions, including creators;
creation dates; number of statements; number of
inserted and deleted statements.

Report Description
User’s Guide

Using APS/ENDEVOR 291

ugpubb.book Page 291 Tuesday, February 19, 2002 9:39 AM
2 Select one of the five APS/ENDEVOR options.

If you need to use an ENDEVOR/MVS function not presented on the
APS/ENDEVOR Menu, you can access ENDEVOR/MVS from any APS
screen by entering ndvr in the Command field on any APS screen.

Specifying a Project and Group
1 From the APS/ENDEVOR Version Control Menu, select option 0,

Project Group Environment. Alternatively, enter proj in the
Command field on any APS screen.

2 Specify the Project and Group you want to check components in
from, and check components out to. You can change the value at
any time.

Checking a Component In
1 From the APS/ENDEVOR Version Control Menu, select option 1,

Checkin. Alternatively, enter ci in the Command field on any APS
screen.

Option Function

Project Group
Environment

Specify the APS Project and Group for
checking components in and out.

Checkin Add to or update the ENDEVOR library with
an APS component from an APS
Project.Group, or signin a component without
adding to or updating the library.

Checkout Retrieve and, by default, sign out a revision
from a controlled member of the ENDEVOR
library to an APS Project.Group so that you
can modify it.

View Differences Display a report showing the changed source
statements that differ between a specific
component revision and the preceding one.

View Print Display reports showing log and source
change information on one or all revisions of
a component.
User’s Guide

292 Chapter 12 Using the APS/ENDEVOR Interface

ugpubb.book Page 292 Tuesday, February 19, 2002 9:39 AM
2 Complete the Checkin screen fields as follows:

Screen Field Description

Entity Type Entity Type of the APS component to check
in. Valid values:

ap Application Painter component in
APSAPPL plus its related component
in APRAPPL

cn Scenario Painter component in
APSCNIO

ds Data Structure Painter component in
APSDATA

ox Online Express component in
APSEXPS

pg Program Painter component in
APSPROG plus its related component
in APRPROG

rp Report Mock-up Painter component
in APSREPT

sc Screen Painter component in
APSSCRN

For other APS component types in your
Project.Group, specify a data set name, such
as USERMACS and DDISYMB.

Member Component name to check in, or leave the
Member field blank to select from a member
list.

System ENDEVOR System name, if it differs from the
default System name for your current APS
Project.Group.

Subsystem ENDEVOR Subsystem name, if it differs from
the default Subsystem name for your current
APS Project.Group.

Comment Text comment for the checkin.

CCID ENDEVOR CCID for the checkin.

Bypass Gen
Processor

Default: No. Specify yes to bypass the
associated ENDEVOR Generate Processor.

Delete Input Source Default: No. Specify yes to delete the
component from the APS Project.Group.
User’s Guide

Using APS/ENDEVOR 293

ugpubb.book Page 293 Tuesday, February 19, 2002 9:39 AM
3 Press Enter to execute the checkin.

4 Check the ENDEVOR Action Summary Report to ensure that the
checkin job succeeded.

Checking a Revision Out
1 From the APS/ENDEVOR Version Control Menu, select option 2,

Checkout. Alternatively, enter co in the Command field on any APS
screen.

Processor Group Name of the ENDEVOR Processor Group.

Override Signout Default: No. Specify yes to override an
existing signout. You must have authority to
do so.

Signin Only Default: No. Specify yes to Signin only,
releasing a previous signout of the
component issued with your user ID; the Add
or Update action is not executed.

Stage ENDEVOR Stage number for signin.

Component Parts To use when checking in AP and PG
component type components. Valid values:

none Default. Process only the component
specified in the Member field.

all Process the component specified in
the Member field and all its
associated component parts, or
components.

list Display the Component Types
Selection screen, to select the
associated component types for
processing.

APS submits a batch job to perform the
checkin when some or all component parts
are checked in with the component specified
in the Member field.

Screen Field Description
User’s Guide

294 Chapter 12 Using the APS/ENDEVOR Interface

ugpubb.book Page 294 Tuesday, February 19, 2002 9:39 AM
2 Complete the Checkout screen fields as follows.

3 Press Enter to execute the checkout.

Screen Field Description

Entity Type Component Type of the component to
checkout. Valid values same as for Checkin.

Member Member name to checkout, or leave the
Member field blank to select from a member
list.

System ENDEVOR System name, if it differs from the
default System name for your current APS
Project.Group.

Subsystem ENDEVOR Subsystem name, if it differs from
the default Subsystem name for your current
APS Project.Group.

Stage ENDEVOR Stage number of the member to
checkout.

Version Defaults to the current revision. You can
optionally override this value with another
version number.

Level Defaults to the current level. You can
optionally override this value with another
level number.

Comment Text comment for the checkout.

CCID ENDEVOR CCID to associate with the
checkout.

No Signout Specify yes to checkout and browse the
member without signing it out to your user
ID.

Replace Member Specify yes to overlay an existing member in
the APS Project.Group.

Override Signout Specify yes to override an existing Signout by
another user. You must have authority to do
so.

Component Parts For use when checking out AP and PG
component type components. Valid values
same as for checkin.
User’s Guide

Using APS/ENDEVOR 295

ugpubb.book Page 295 Tuesday, February 19, 2002 9:39 AM
4 Check the ENDEVOR Action Summary Report to ensure that the
checkout job has succeeded.

Running the View Differences Report
1 On the APS/ENDEVOR Version Control Menu, select option 3, View

Differences. Alternatively, enter df in the Command field on any
APS screen.

2 Specify the name, location, version, and level of a controlled
member revision you want to report on. The report defaults to the
current version and level; you can override with any version and
level.

Running the View Print Reports
1 On the APS/ENDEVOR Version Control Menu, select option 4, View

Print. Alternatively, enter vp in the Command field on any APS
screen.

2 Run any of the reports by specifying the report, name, and location
of a controlled member you want to report on. For reports on a
specific revision, specify the version and level of the revision to
report on. The report defaults to the current version and level; you
can override with any version and level.
User’s Guide

296 Chapter 12 Using the APS/ENDEVOR Interface

ugpubb.book Page 296 Tuesday, February 19, 2002 9:39 AM
User’s Guide

297

Index

ugpubb.book Page 297 Tuesday, February 19, 2002 9:39 AM
Symbols

&GEN-DB-REC-01 NAMES flag 27
&VS-GEN-01-USING-RECNAMES flag 36

Numerics
01 keyword 218, 237, 252, 261

use in Report Writer 252, 265

A
accumulators, Report Writer

initialize 271
page 271
sum 269, 271, 273, 274

Add function, Online Express 83
specifying 88

adding database records, function in Online
Express 83

specifying 88
Alternate Functions screen

for character programs 90
ampersands

in text fields 59
Application Painter 13

accessing 17
accessing other painters from 22
purpose of 15

applications
application definition, copying 22

application definition, creating 17
application definition, modifying 22
components of 15
components of, copying 22
components of, defining using APS 22
components of, deleting 22
executing 188
generating 171

APS
about 9, 13
tool set for 13

APS/ENDEVOR Interface 14
APSREPT file 261
arrays, Report Writer

see iterative expressions
assembler macros, screen generation param-

eter 75
associated program, ISPF prototyping gener-

ation option 77
attributes, field 41

assigning to a specific field 52
assigning to all fields on screen 53
blinking 56, 77
color 55, 76
cursor position, initializing 90
Data Element Facility fields, modifying

53
Data Element Facility fields, viewing 49
highlighting 56
intensity 54, 76
light pen detection 55
list of 54
modified data tag 55
modifying 53
modifying at run time 56, 76
numeric keyboard locking 55
User’s Guide

298

ugpubb.book Page 298 Tuesday, February 19, 2002 9:39 AM
protected 54, 77
reverse video 56, 77
underlining 56, 77
unprotected 54, 77

AVG function, SQL 123

B

Backward function, Online Express 83
specifying 88

batch
specifying as target 18

batch programs
see programs, batch
see programs, batch, Program Painter

Bind, SQL options 181
BLANK WHEN ZERO Report Writer clause 267
blocks of records

see repeated record blocks
BMS mapsets

first line of, setting 77
generating 171
generating, multiple-map mapsets 188
names, overriding 77

business name 201
bypass field edits 64

C
CA keyword 222
Call function, Online Express 83

specifying 90
calling subroutines, function in Online Ex-

press 83
specifying 90

Caps option, Screen Painter 47, 58
CHANGE INDICATE Report Writer clause 267
checking in files

to ENDEVOR 288, 291

checking out files
from ENDEVOR 289, 293

CICS
BMS mapsets, generating 171
BMS mapsets, multiple-map mapsets,

generating 188
BMS mapsets, names, overriding 77
modified data tag, setting 55
screen generation parameters 77
specifying as target 18
transaction ID, specifying 77

Clear function, Online Express 83
specifying 88
specifying low-values 94

Clear key, assigning functions to 93
clearing screen, function in Online Express 83

specifying 88
specifying low-values 94

COBOL
coding in Program Painter 213, 229
coding in Specification Painter 98, 108

COBOL/2
generator option 176

color, screen fields 55, 76
Column Selection screen 120
Column Selection Update screen 121
Commarea

defining in Program Painter 221
Commarea, defining 166
comments

control points, Online Express 104
in program code 225, 242

comments, writing
in Scenario Painter 66

compiling
COBOL compile step 171

connecting records, IDMS 146, 151
control breaks for reports 254, 263, 265, 271,

272
CONTROL FOOTING (CF) keyword 252, 265
CONTROL HEADING (CH) keyword 252, 265
control points

database call 157
standard 103
User’s Guide

299

ugpubb.book Page 299 Tuesday, February 19, 2002 9:39 AM
CONTROL Report Writer clause 264, 272
conversion values, field edits 62
CONVERT command, Program Painter 227,

244
copying

application components 58
application definitions 22
field edits 63

copylibs/copybooks
importing, IMS 26
importing, VSAM 31, 35
including in programs 219, 221, 238, 239

Correlation Names screen 130
COUNT function, SQL 123
counters, Report Writer

line 271
Create Like function 22
currency, establishing 138, 148
cursor feedback, IMS DC generation option

78
cursor, positioning on screen fields 90
cursors, SQL table

declarations 220, 238
Customization Facility 14
customizing

Online Express programs, custom func-
tions, character programs 94

Online Express programs, database call
error processing 103, 157, 161

Online Express programs, functions, pre-
defined 103, 152

D
data communication calls 224
Data Division

defining in Program Painter 214, 230, 234
invoking macros in 226, 242

Data Element Facility 14
field attributes, modifying 53
field attributes, viewing 49
global and local screen fields 43

selecting fields from, for character
screens 48

specifying for Project and Group 174
Data Element Info screen 49
Data Element List screen 48
data simulation in Scenario Painter 45, 68
Data Structure Painter 13

including data structures in program 220,
238

data structures
creating in program 218, 237
including in programs 218, 220, 236, 238
naming conventions 20
program locations for 20
specifying in application definition 20

Database Access Summary screen 119, 137,
141, 146

database calls
Program Painter 224

database calls, Online Express
actions and functions 113
customizing 103, 152
error handling 103, 157, 161
IDMS 146
IDMS, connecting and disconnecting

records 146, 151
IDMS, looping 147, 151, 153
IDMS, member records, obtaining 148
IDMS, qualifying 149
IMS 136
IMS, child records, obtaining 138
IMS, looping 138, 141, 153
IMS, qualifying 138
looping 114
looping 89, nested loops 153
SQL 118
SQL, column list, updating 121
SQL, Exists clause 126
SQL, functions 123
SQL, generated calls, previewing 129
SQL, Group By clause 123
SQL, Having clause 127
SQL, host variables, overriding 122
SQL, index columns 127
User’s Guide

300

ugpubb.book Page 300 Tuesday, February 19, 2002 9:39 AM
SQL, Join calls 130
SQL, literals, obtaining 123
SQL, looping 120, 153
SQL, qualifying 123
SQL, Subselect clause 124
SQL, Union calls 132
VSAM 141
VSAM, looping 142, 145, 153
VSAM, qualifying 143

database functions, Online Express 83
customizing 103, 152
execution methods, specifying 92
specifying 87

database importers 13
IDMS 37
IMS 26
SQL DB 31
VSAM 35

Database Qualification screen 138, 143, 149
Database Record Selection 119, 137, 142, 147
DATA-NAME Report Writer clause 269
date field edits

accessing 62
DB Target

using multiple 25
DB target

specifying 18
DB2

cursor declarations, defining in program
220, 238

specifying as target 18
table declarations, defining in program

220, 238
DBDs

importing 26
DC target, specifying 18
DDI statements

IMS, for logical relationships 28
IMS, for secondary indexes 28

DDISYMB, generating
IMS 29
VSAM 35

DDS
specifying as target 18

debugging programs
SCBTRACE option 177

DECL keyword 242
Declarative Section

USE BEFORE REPORTING 255
Declaratives Section

defining in Program Painter 241
declaratives, Report Writer 255
Delete function, Online Express 83

specifying 88
deleting

application components 22
database records, function in Online Ex-

press 83
database records, function in Online Ex-

press 65, for character programs
88

field edits 63
DETAIL (DE) keyword 252, 265
detail lines, Report Writer 252, 253, 264, 269
detail reports, Report Writer 271
device type, IMS DC generation option 78
DIF-DOF name, IMS DC generation option 78
disconnecting records, IDMS 146, 151
Documentation Facility 13
DPAR keyword 241
DS keyword 220, 238
DSCA, IMS DC generation option 79

E
Edit Selection screen, field edits 60
editing options

Screen Painter 47, 58
edits, field

accessing 60
bypassing 64
conversion values for 62
copying 63
deleting 63
error handling 63
overview of 42
User’s Guide

301

ugpubb.book Page 301 Tuesday, February 19, 2002 9:39 AM
user-defined, creating 62
value ranges for 62

edits, fields
date fields 62
summary of current edits 60
time fields 62

ENDEVOR, APS Interface 287
checking in files 288, 291
checking out files 289, 293
reporting on files 289, 295

Environment Division
defining in Program Painter 213, 218,

230, 234
invoking macros in 226, 242

error handling
APS Precompiler 172
database calls, Online Express, customiz-

ing 157, 161
field edits 63
field edits, bypassing 64
SCBTRACE option 177

executing applications
APS facilities for 188

execution facilities, APS 188
Exists clause, SQL 126
Exit function, Online Express 83

specifying 88
exiting programs, function in Online Express

83
specifying 88

Express Parms screen 94, 104
extended attributes 54

modifying at run time 76
modifying at run time, ISPF prototyping

76

F
FD keyword 234

use in Report Writer 252, 261
Field Attributes screen 52
Field Mapping screen 101

field mapping, Online Express 101
Field Name Display option, Screen Painter 48
Field Selection screen, field edits 60
fields

CICS, TP-USERAREA 221
CICS, TP-USER-LEN 221
DDS, TP-USERAREA 221
DDS, TP-USER-LEN 221
IMS DC, TP-USERAREA 221
IMS DC, TP-USER-LEN 221
ISPF Dialog, TP-USERAREA 221
ISPF Dialog, TP-USER-LEN 221
Report Writer, internal sum accumulators

269, 273, 274
Report Writer, LINE-COUNTER 256
Report Writer, PAGE-COUNTER 256

fields, screen
see screen fields

File Section
defining in Program Painter 230
file description keyword 234
invoking macros in 226, 242
Report Writer 252, 261
sort file description keyword 236

File-Control
defining in Program Painter 234

FINAL keyword 264
flags

error handling, Online Express status 161
SAGE-TRACE-FLAG 177

footers, Report Writer 252, 264
format, character

of character screens 56
Forward function, Online Express 83, 88
function codes, Online Express program

renaming default codes 92
specifying 89, 91

function fields, Online Express program 86
defining 88

functions, Online Express program
custom, defining 94
customizing, functions, predefined 103,

152
database, predefined 83
User’s Guide

302

ugpubb.book Page 302 Tuesday, February 19, 2002 9:39 AM
database, predefined, customizing 103,
152

database, predefined, error processing
161

database, predefined, execution meth-
ods, specifying 92

database, predefined, specifying 87
functions, predefined, error processing

103, 157
functions, predefined, list of 82
teleprocessing, predefined, customizing

103
teleprocessing, predefined, execution

methods, specifying 92
teleprocessing, predefined, specifying 87

G

GEN-DB-REC-01-NAMES flag 36
GENERATE Report Writer statement 254, 271
generating applications 171

IDMS options 184
options, APS generator options 174
options, APS precompiler options 176
options, for Online Express 94
options, Online Express 104
options, resetting to default values 186
previewing APS-generated source 227,

244
generating programs 171
generating screens 171

files for generated source 172
generation parameters 74
generation parameters, for all targets 75
generation parameters, for CICS 77
generation parameters, for IMS 78
generation parameters, for ISPF proto-

typing 77
Generator Options screen 174
generators 13
global

application components 16

application components, specifying in
application definition 16

field edit messages 63
screen fields 43
screen fields, attributes, modifying 53
screen fields,selecting from Data Element

Facility 48
stubs, as custom program functions 95
stubs, at database call control points 158,

160
stubs, at standard control points 103
stubs, naming conventions 21
stubs, Program Painter, including in pro-

grams 224, 240
stubs, rules for coding 108
stubs, specifying in application definition

21
Group By clause, SQL 123
GROUP INDICATE Report Writer clause 267
GSAM

PSBs and DBDs, importing 26

H
Having clause, SQL 127
headers, Report Writer 252, 264
Help source file

creating 198
highlighting screen fields 56

I
I/O fields

creating 48
mapping to databases 101

Identification Division
defining in Program Painter 213, 218,

230, 233
User’s Guide

303

ugpubb.book Page 303 Tuesday, February 19, 2002 9:39 AM
IDMS
connecting and disconnecting records

146, 151
database calls 146
databases, importing 37
keys, qualifying on 149, 162
loop calls 147, 151
member records, obtaining 148
options 184
specifying as target 18

IDMS DB
specifying as target 18

IMS Database Importer screen 29
IMS DB

copylibs, importing 26
database calls 136
databases, importing 26
DBDs, importing 26
loop calls 138, 141
PSBs, importing 26
specifying as target 18

IMS DC
cursor feedback, specifying 78
device type, specifying 78
DIF-DOF name, specifying 78
DSCA, specifying 79
lines per page, specifying for printing 79
MFS mapsets, generating 171
MID, default values, specifying 79
MID, name, specifying 78
MOD, fill character, specifying 79
MOD, name, specifying 79
operator logical paging, specifying 78
screen generation parameters 78
specifying as target 18

IMS DC screens
see screen fields / attributes, field / edits,

field
including in programs

copylibs/copybooks 219, 221, 238, 239
data structures 218, 220, 236, 238
global stubs 224, 240

index columns, SQL
ordering in call 127

qualifying on 120
initialize reports, Report Writer 271
INITIATE Report Writer statement 254, 271
Input-Output Section

defining in Program Painter 234
invoking macros in 242
keyword 252, 261
Report Writer 252, 261

intensity, screen fields 54, 76
IO keyword 234

use in Report Writer 252, 261
ISPF Dialog

specifying as target 18
ISPF Dialog screens

see screen fields / attributes, field / edits,
field

ISPF prototyping
see prototyping under ISPF

iterative expressions, Report Writer 274

J
job control cards, creating 184
Join calls, SQL 130
JUSTIFIED RIGHT Report Writer clause 267

K
KANJI format

for character screens, ruled lines 56
for character screens, specifying for fields

56
Keys option, Screen Painter 47, 58
keys, record

IDMS, group-level, qualifying on 162
IDMS, qualifying on 149
VSAM, group-level, qualifying on 162
VSAM, qualifying on 143
User’s Guide

304

ugpubb.book Page 304 Tuesday, February 19, 2002 9:39 AM
L

layouts, report
see report mock-ups

length
character screen fields, changing 54, 59

light pen detection 55
line counter, Report Writer 256, 271
LINE Report Writer clause 265
LINE-COUNTER Report Writer field 256
Linkage Section

defining in Program Painter 214, 220,
230, 239

invoking macros in 226, 242
literals, Report Writer 254
LK keyword 220, 239
Loc(ation) field, Application Painter 21
local

screen fields 39, 43
stubs, as custom program functions 95
stubs, at database call control points 158,

160
stubs, at standard control points 103
stubs, rules for coding 107

locations, program
specifying for Customization Facility

source 226, 242
looping, Online Express 114

IDMS 147, 151, 153
IMS 138, 141, 153
nested loops 153
nesting levels 155
SQL 120, 153
VSAM 142, 145, 153

M
macros, user-defined

as custom program functions 95
at database call control points 158, 160
at standard control points 109

invoking in Program Painter program
226, 242

naming conventions 20
program locations for 21
specifying in application definition 20

mapping, fields
see field mapping, Online Express

MAX function, SQL 123
message switching, function in Online Ex-

press 83
specifying 90

MFS mapsets
generating 171
trancode literal values, specifying 79

MID
default values, specifying 79
name, specifying 78

MIN function, SQL 123
MOCK keyword 252, 265
MOCKUP Report Writer statement 266
mock-ups

see report mock-ups
MOD

fill character, specifying 79
modifiable extended attributes

prototyping under ISPF 76
modified data tag, setting 55
MSG-SW function, Online Express 83

specifying 90

N
Next function, Online Express 83

specifying 88
NTRY keyword 213, 223, 239
Nulls option, Screen Painter 47, 58
numeric keyboard locking 55
User’s Guide

305

ugpubb.book Page 305 Tuesday, February 19, 2002 9:39 AM
O
Online Express 13

Commarea, defining 166
control points, database call 157
control points, standard 103
customizing programs, custom functions,

character programs 94
customizing programs, database call er-

ror processing 103, 157, 161
customizing programs, functions, pre-

defined 103, 152
database calls, customizing 103, 152
database calls, defining 113
database functions 83
database functions, execution methods,

specifying 92
database functions, specifying 87
function codes, renaming 92
function codes, specifying 89
function fields, defining 88
generating applications, programs,

screens 171
menu 88
processing logic, defining 81
savekey storage, defining 166
screen fields, mapping to databases 101
stubs, global 95
stubs, local 95
teleprocessing functions 83
teleprocessing functions, execution

methods, specifying 92
teleprocessing functions, specifying 87

Online Express menu 88
online programs

see programs, online
operator logical paging, specifying 78
Order By Columns screen 127

P
PA keys, assigning functions to 93
page counter, Report Writer 256, 271
PAGE FOOTING (PF) keyword 252, 265
page headers and footers

see headers, Report Writer and footers,
Report Writer

PAGE HEADING (PH) keyword 252, 265
PAGE LIMIT Report Writer clause 264
PAGE-COUNTER Report Writer field 256
Painter Menu

Create Like function 58
PANVALET keyword 220, 239
PARA keyword 223, 240
paragraphs

at control points 110
rules for coding 110

paragraphs, Program Painter
writing in program 223, 240

Parm screen, field edits 63
PF Key Functions screen 92
PF keys

assigning program functions to 92
PIC clause

report mock-ups 260
Report Writer 267, 269, 273, 274

Precompiler Options screen 176
precompiler, APS

options for 176
processes performed 171

PROC keyword 239
Procedure Division

defining in Program Painter 214, 223,
230, 239

PROCEDURE DIVISION USING statement
239

Report Writer 254, 255
Program Definition screen 88
program locations

specifying for Customization Facility
source 226, 242
User’s Guide

306

ugpubb.book Page 306 Tuesday, February 19, 2002 9:39 AM
Program Painter 13
batch programs, creating 229
Commarea, defining 221
data communication calls, writing 224
database calls, writing 224, 240
online programs, creating 213
online programs, source code to use 215

programs, batch
see report mock-ups
creating 229
generation option, Report Writer 178
naming conventions 19
sample program 244
specifying in application definition 19

programs, online
executing 188
generating 171
message switch function, Online Express

83
message switch function, Online Express,

specifying 90
naming conventions 19
specifying in application definition 19
transfer function, Online Express 83
transfer function, Online Express, specify-

ing 90
Project and Group

specifying in application 173
Project Group Environment screen 173
protected fields

character screens 54, 77
Prototype Execution Menu 189
Prototype Execution screen 189
prototype, screen flow

see scenario prototype
prototyping under ISPF

ampersands in text fields 59
associated programs, specifying 77
field names 54
modifiable extended attributes 76
screen generation parameters 77
specifying as target 18

prototyping under ISPF screens
see screen fields / attributes, field / edits,

field
PSBs

importing 26
naming conventions 20
specifying in application definition 20

Q

Query function, Online Express 83
specifying 88

querying databases, function in Online Ex-
press 83

specifying 88

R
REC keyword 219, 237
record

length for reports 262
record blocks

see repeated record blocks
RED keyword 252, 263
REFERENCE Report Writer clause 253, 269,

274
Refresh function, Online Express 83, 88
Repeated Block Menu 71
Repeated Block pop-up screen 51
repeated record blocks

creating 51
functions and function fields for 86
functions and function fields, specifying

88
modifying 71
scrolling, functions in Online Express 83,

88
report accumulators

see accumulators, Report Writer
User’s Guide

307

ugpubb.book Page 307 Tuesday, February 19, 2002 9:39 AM
report control break
see control breaks for reports

report description entry
see RED keyword

REPORT FOOTING (RF) keyword 252, 265
REPORT HEADING (RH) keyword 252, 265
report mock-ups

accessing the painter 259
APSREPT file 261
column limit 260
data fields 259, 260
description of 251
identify in Report Section 265
line limit 260
literal fields 259
mapping data items 253, 261, 267, 273,

277
mapping lines 261, 266, 277
naming conventions 20, 260
painting 259
PIC string 260
record size 262
specifying in application definition 20

Report Painter
see report mock-ups

Report Section
invoking macros in 242
keywords 252
Report Writer 252

Report Writer
see mock-up report, mock-ups
01 keyword 261
accumulators 271
accumulators, initialize 271
accumulators, page 271
accumulators, sum 269, 271, 273, 274
begin processing 254
code your own WRITE statement 272
control breaks 254, 263, 265, 271, 272
counters, line 271
declaratives 255
defining the report 263
detail lines 252, 253, 264
detail reports 271

end processing 256, 271
FD keyword 261
File Section 252, 261
footers 252, 264
headers 252, 264
identify mock-up 265
initialize accumulators 253, 271
Input-Output Section 252, 261
iterative expressions 274
line limits 264
literal values 254, 259
mapping data items 253, 261, 267, 273,

274, 277
mapping report lines 261, 266, 277
MOCK keyword 252, 265
multiple detail lines 269
non-printing fields 253, 269, 274
option for large programs 177
page limits 264
Procedure Division statements 254, 255
processing each report 254
record length 262, 272
RED keyword 252, 263
report group types 252, 265, 272
Report Section 252, 263
sample report programs 279
summary reports 271
summing data items 253, 269, 274
USE BEFORE REPORTING 255
Working-Storage entries 263, 272

reports, ENDEVOR 289
RESET Report Writer clause 269
RETITLE command

Scenario Painter 66
row functions

see repeated record blocks
ruled line attribute, KANJI format 56
ruler, displaying in Screen Painter 59
RUN command

Scenario Painter 67
User’s Guide

308

ugpubb.book Page 308 Tuesday, February 19, 2002 9:39 AM
S

Savekey Definition screen 168
savekey storage, defining 166
Scenario Painter 13, 44, 65

see scenario prototype
scenario prototype 44

accessing Scenario Painter 65
creating and running 65
data, passing 45, 68
screen sequence defining 66
screen sequence, modifying 69
screen titles for, assigning 52

Screen Editor 13
screen fields

copying 72
creating 47
deleting 71
function fields 86
generation parameters 74
generation parameters, for all targets 75
generation parameters, for CICS 77
generation parameters, for IMS 78
generation parameters, for ISPF proto-

typing 77
global 43
global attributes, modifying 53
global attributes, viewing 49
global, selecting from Data Element Fa-

cility 48
I/O fields, creating 48
length, changing 48, 54, 59
limit for screen 59
local 39, 43
mapping to databases 101
MFS, trancodes, literal values 79
moving 72
naming conventions 54
repeated record blocks, copying 72
repeated record blocks, creating 51
repeated record blocks, deleting 71
repeated record blocks, modifying 71, 73
repeated record blocks, moving 72

system message fields 57
text fields, creating 48
value, initial 55

screen fields attributes, field
see Data Element Facility / edits, field

screen flow prototype
see scenario prototype

Screen Generation Parameters screen 74
Screen Painter 39

accessing 47
editing options 47, 58
user profile 47, 58

Screen Painter screens
see screen fields

screen, APS
Express Parms 104

screens
copying 58
data, passing in scenario prototype 45, 68
editing options, Screen Painter 58
generating 171
generating, files for generated source

172
generation parameters 74
generation parameters, for all targets 75
generation parameters, for CICS 77
generation parameters, for IMS 78
generation parameters, for ISPF proto-

typing 77
layout, designing 39
layout, modifying 71
naming conventions 19
saving 58
scenario of sequence 44
scenario of sequence, creating and run-

ning 65
sending function, Online Express 83
sending function, Online Express, specify-

ing 90
size, specifying 19
specifying in application definition 19
titles, assigning for Scenario Painter 52

screens, APS
Alternate Functions 90
User’s Guide

309

ugpubb.book Page 309 Tuesday, February 19, 2002 9:39 AM
Bind Options 181
Checkin, ENDEVOR Interface 291
Checkout, ENDEVOR Interface 293
Column Selection 120
Column Selection Update 121
Correlation Names 130
Data Element Info 49
Database Access Summary 119, 137, 141,

146
Database Qualification 138, 143, 149
Database Record Selection 119, 137, 142,

147
Edit Selection 60
ENDEVOR Version Control Menu 290
Express Parms 94
Field Attributes 52
Field Mapping 101
Field Selection 60
Generator Options 174
IDMS Options 184
IMS Database Importer 29
Job Control Cards 184
Online Express menu 88
Order By Columns 127
Parm 63
PF Key Definition 92
Precompiler Options 176
Program Definition 88
Project Group Environment 173
Prototype Execution 189
Prototype Execution Menu 189
Repeated Block Menu 71
Repeated Block pop-up 51
Scenario Painter 44, 65
Screen Generation Parameters 74
Special Key Definition 93
SQL Command Review 129
SQL Having Clause Specification 127, 132
SQL Qualification Specification 123
Subselect Specification 124
Union Columns Cross Reference 135
Union Summary Menu 133
View Differences, ENDEVOR Interface

295

VSAM File Importer 35
scrolling repeated record blocks, functions in

Online Express 83, 88
SD keyword 236
SELECT statement keyword 261
Send function, Online Express 83

specifying 90
sending screens, function in Online Express

83
specifying 90

SOURCE Report Writer clause 253, 267, 269,
274

Special Key Definition screen 93
Special-Names

defining in Program Painter 218, 234
Specification Painter 13
SPNM keyword 218, 234
SQL

Bind, options 181
cursor declarations, defining in program

220, 238
database calls, Online Express 118
Exists clause 126
functions 123
Group By clause 123
Having clause 127
index columns, ordering in call 127
index columns, qualifying on 120
Join calls 130
loop calls 120
specifying as target 18
Subselect clause 124
table declarations, defining in program

220, 238
Union calls 132

SQL Command Review screen 129
SQL DB2 objects, importing 31
SQL functions 123
SQL Having Clause Specification screen 127,

132
SQL Qualification Specification screen 123
status flags, Online Express 161
STUB keyword 224, 240
User’s Guide

310

ugpubb.book Page 310 Tuesday, February 19, 2002 9:39 AM
stubs global stubs
local stubs 15

subroutines/subprograms
calling function, Online Express 83
calling function, Online Express, specify-

ing 90
subschemas

IDMS, importing 37
IMS, importing 26
naming conventions 20
specifying in application definition 20
using multiple 25
VSAM, importing 35

Subselect clause, SQL 124
Subselect Specification screen 124
sum accumulators, Report Writer 253, 269,

273, 274
SUM function, SQL 123
SUM Report Writer clause 253, 269, 274
summary reports, Report Writer 271
SYBT keyword 226, 243
SYDD keyword 226, 243
SYEN keyword 226, 243
SYFD keyword 226, 243
SYIO keyword 243
SYLK keyword 226, 243
SYLT keyword 226, 243
SYM1 keyword 226, 243
SYM2 keyword 226, 243
SYRP keyword 243
SYSMSG field

creating 57, 76
system messages

creating field for 57
for character screens, creating field for

76, 90
SYWS keyword 226, 243

T
tables, SQL

declarations 220, 238

teleprocessing functions, Online Express 83
customizing 103
execution methods, specifying 92
specifying 87

TERMINATE Report Writer statement 256,
271

terminating programs
see exiting programs, function in Online

Express
text fields

creating 48
time field edits

accessing 62
TITLE command, Screen Painter

effect in scenario prototype 66
TP-USERAREA

CICS 221
DDS 221
IMS DC 221
ISPF Dialog 221

TP-USER-LEN 221
trace facility

SCBTRACE 177
trancodes

literal values, specifying 79
transaction ID, specifying 77
transferring to other programs, function in

Online Express 83
specifying 90

Ty(pe) field, Application Painter 20
TYPE Report Writer clause 265, 272

U
Union calls, SQL 132
Union Columns Cross Reference screen 135
Union Summary Menu 133
unprotected fields

character screens 77
Update function, Online Express 83

specifying 88
User’s Guide

311

ugpubb.book Page 311 Tuesday, February 19, 2002 9:39 AM
updating database records, function in On-
line Express 83

specifying 88
UPON Report Writer clause 269
USE BEFORE REPORTING Report Writer state-

ment 255
User help

application modules 203
display program 191
programs 204
types of 192

User help database
defining help databases 192

User Help Facility 14
user help, creating

for character programs, source files, edit-
ing 210

user-defined field edits
creating 62

V
VALIDATE command, Program Painter 227,

244
value ranges, field edits 62
VALUE Report Writer clause 254
value, screen field, initial 55
VSAM

copylibs, importing 35
database calls 141
files, importing 35
keys, qualifying on 143, 162
loop calls 142, 145
specifying as target 18
subschemas, importing 31, 35

VSAM File Importer screen 35

W
Working-Storage Section

defining in Program Painter 214, 218,
230, 236

invoking macros in 226, 242
Working-Storage Section keyword 263
WRITE ROUTINE Report Writer clause 272
WS keyword 263

X
XCTL function, Online Express 83

specifying 90
User’s Guide

312

ugpubb.book Page 312 Tuesday, February 19, 2002 9:39 AM
User’s Guide

	User's Guide
	Table of Contents
	1 Introduction
	Introduction to APS
	A Scenario for Using APS
	The APS Tool Set

	2 Paint the Application Definition
	Application Painter Concepts
	Painting an Application Definition
	Special Considerations

	Defining Application Components

	3 Import Database Definitions
	Importer Concepts
	Importing IMS PSBs and DBDs
	Supplementing or Overriding DDI Statements

	Importing SQL DB2 Objects
	Generating a DB2/DBP Object Import Report
	Special Considerations

	Importing VSAM Files
	Importing IDMS Database Definitions

	4 Paint Character Screens
	Screen Painter Concepts
	Field Attributes
	Field Edits
	Global Data Elements
	Scenario Prototype
	Target-Specific Parameters

	Painting a Screen
	Special Considerations

	Painting Field Edits
	Creating and Running a Screen Flow Prototype
	Modifying Screen Layouts
	Delete a Field or Row
	Modify a Repeated Record Block
	Move or Copy a Field or Row
	Track Multiple Field Changes

	Setting Parameters for Generation
	Importing BMS Mapsets

	5 Define Processing Logic
	Concepts of Processing Logic
	Predefined Program Functions
	Specifying Predefined Program Functions
	Special Considerations

	Custom Program Functions
	Defining Custom Program Functions

	Mapping Screens to Database Fields
	Special Considerations

	Control Points
	Inserting Logic at Control Points

	6 Define Database Access
	Concepts of APS Database Access
	Defining SQL Database Calls
	Defining Basic SQL Calls
	Defining Join Calls
	Defining Union Calls
	Special Considerations

	Defining IMS Database Calls
	Special Considerations

	Defining VSAM Database Calls
	Special Considerations

	Defining IDMS Database Calls
	Special Considerations
	Connecting and Disconnecting Records

	Customized Database Calls
	Nested Loops
	Functions with Multiple Database Actions
	Custom Logic at Database Call Control Points
	Status Codes and Error Messages
	Multiple-Field Key Qualification
	Database Calls as Custom Program Functions

	Savekey and Commarea Storage
	Defining Savekey Storage and a Commarea
	Special Considerations

	7 Generate the Application
	Concepts of Generation
	Setting Options
	Setting Project and Group Options
	Setting Generator Options
	Setting Precompiler Options
	Setting SQL Bind and Translate Options
	Setting Job Control Cards
	Setting IDMS Options
	Resetting Profile Variables

	Generating Applications
	Special Considerations

	Executing Applications
	Access the execution facilities

	8 Create User Help
	User Help Facility Concepts
	Defining the Help Database
	Defining an IMS Help Database
	Defining a VSAM Help Database
	Defining SQL Help Databases
	Special Considerations

	Working with the Help Source File
	Creating the Help Source File
	Special Consideration

	Generating the User Help Application
	Generating User Help in CICS/ISPF Environments
	Generating User Help in an IMS Environment
	Special Considerations

	Loading the Help Database
	Loading Help Source for VSAM
	Loading Help Source for IMS
	Special Considerations

	Customizing the User Help Application
	Maintaining the Help Database

	9 Define Online Programs with Program Painter
	Concepts of the Program Painter
	Creating Online Programs in the Program Painter
	Special Considerations

	10 Create Batch Programs
	Concepts of APS Batch Programming
	Creating Batch Programs
	Special Consideration

	Sample Batch Program

	11 Create Reports with Report Writer
	Concepts of APS Report Writing
	Painting Report Mock-Ups
	Special Considerations

	Creating Report Programs
	Special Considerations

	Generate Multiple SUM or SOURCE Statements
	Suffixed Data Elements
	Array Items

	Mapping Considerations
	Sample Program

	12 Using the APS/ENDEVOR Interface
	APS/ENDEVOR Overview
	Using APS/ENDEVOR
	Accessing APS/ENDEVOR Options
	Specifying a Project and Group
	Checking a Component In
	Checking a Revision Out
	Running the View Differences Report
	Running the View Print Reports

	Index

